Shuanglong Jin, Xiaolin Liu, Wang Bo, Zongpeng Song
{"title":"导致内蒙古东部输电线路跳闸事故的强风形成机制分析","authors":"Shuanglong Jin, Xiaolin Liu, Wang Bo, Zongpeng Song","doi":"10.1007/s13143-024-00352-w","DOIUrl":null,"url":null,"abstract":"<div><p>Meteorological disasters pose a serious threat to the State Grid Corporation of China, which covers ~ 88% of Chinese national territory. Of these, strong winds deserve a special attention, as they often induce windage yaw discharge of transmission lines and even toppling of transmission towers, resulting in serious economic losses. On 28 June 2023, a severe tripping incident of transmission line appears in Eastern Inner Mongolia due to strong winds. In this study, we conduct comprehensive analyses to clarify the favorable background conditions and governing mechanisms for producing the strong winds. Main results are shown as follows. Synoptic analysis indicates that, the favorable background environments for the event are characterized by a strong upper-level jet associated upper tropospheric divergence; an intense middle-level warm advection ahead of a shortwave trough; and a long-lived lower-tropospheric mesoscale vortex. The strong winds that cause the tripping incident mainly occur in the southeastern quadrant of the vortex. Vorticity budget presents that the period from the mesoscale-vortex’s formation to 4 h before is crucial to the mesoscale vortex, as cyclonic vorticity increases rapidly mainly due to the lower-level convergence-related vertical stretching. In contrast, the horizontal transport mainly results in a net export of cyclonic vorticity, which is the most detrimental factor. Kinetic energy (KE) budget shows that, after the mesoscale vortex forms, the strong winds within its southeastern quadrant enhance rapidly. Overall, the positive work done by the pressure gradient force associated with the mesoscale vortex dominates the enhancement of strong winds; the horizontal transport of KE is the second dominant factor, and the vertical transport of KE (i.e., the downward momentum transportation) shows the least contribution.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 3","pages":"289 - 302"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00352-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanisms Accounting for the Formation of the Strong Winds that Caused the Tripping Incident of Transmission Line in Eastern Inner Mongolia\",\"authors\":\"Shuanglong Jin, Xiaolin Liu, Wang Bo, Zongpeng Song\",\"doi\":\"10.1007/s13143-024-00352-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Meteorological disasters pose a serious threat to the State Grid Corporation of China, which covers ~ 88% of Chinese national territory. Of these, strong winds deserve a special attention, as they often induce windage yaw discharge of transmission lines and even toppling of transmission towers, resulting in serious economic losses. On 28 June 2023, a severe tripping incident of transmission line appears in Eastern Inner Mongolia due to strong winds. In this study, we conduct comprehensive analyses to clarify the favorable background conditions and governing mechanisms for producing the strong winds. Main results are shown as follows. Synoptic analysis indicates that, the favorable background environments for the event are characterized by a strong upper-level jet associated upper tropospheric divergence; an intense middle-level warm advection ahead of a shortwave trough; and a long-lived lower-tropospheric mesoscale vortex. The strong winds that cause the tripping incident mainly occur in the southeastern quadrant of the vortex. Vorticity budget presents that the period from the mesoscale-vortex’s formation to 4 h before is crucial to the mesoscale vortex, as cyclonic vorticity increases rapidly mainly due to the lower-level convergence-related vertical stretching. In contrast, the horizontal transport mainly results in a net export of cyclonic vorticity, which is the most detrimental factor. Kinetic energy (KE) budget shows that, after the mesoscale vortex forms, the strong winds within its southeastern quadrant enhance rapidly. Overall, the positive work done by the pressure gradient force associated with the mesoscale vortex dominates the enhancement of strong winds; the horizontal transport of KE is the second dominant factor, and the vertical transport of KE (i.e., the downward momentum transportation) shows the least contribution.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 3\",\"pages\":\"289 - 302\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-024-00352-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-024-00352-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00352-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Mechanisms Accounting for the Formation of the Strong Winds that Caused the Tripping Incident of Transmission Line in Eastern Inner Mongolia
Meteorological disasters pose a serious threat to the State Grid Corporation of China, which covers ~ 88% of Chinese national territory. Of these, strong winds deserve a special attention, as they often induce windage yaw discharge of transmission lines and even toppling of transmission towers, resulting in serious economic losses. On 28 June 2023, a severe tripping incident of transmission line appears in Eastern Inner Mongolia due to strong winds. In this study, we conduct comprehensive analyses to clarify the favorable background conditions and governing mechanisms for producing the strong winds. Main results are shown as follows. Synoptic analysis indicates that, the favorable background environments for the event are characterized by a strong upper-level jet associated upper tropospheric divergence; an intense middle-level warm advection ahead of a shortwave trough; and a long-lived lower-tropospheric mesoscale vortex. The strong winds that cause the tripping incident mainly occur in the southeastern quadrant of the vortex. Vorticity budget presents that the period from the mesoscale-vortex’s formation to 4 h before is crucial to the mesoscale vortex, as cyclonic vorticity increases rapidly mainly due to the lower-level convergence-related vertical stretching. In contrast, the horizontal transport mainly results in a net export of cyclonic vorticity, which is the most detrimental factor. Kinetic energy (KE) budget shows that, after the mesoscale vortex forms, the strong winds within its southeastern quadrant enhance rapidly. Overall, the positive work done by the pressure gradient force associated with the mesoscale vortex dominates the enhancement of strong winds; the horizontal transport of KE is the second dominant factor, and the vertical transport of KE (i.e., the downward momentum transportation) shows the least contribution.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.