鸟瞰图中的特征感知再加权 (FAR),用于自动驾驶应用中基于激光雷达的 3D 物体检测

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Georgios Zamanakos , Lazaros Tsochatzidis , Angelos Amanatiadis , Ioannis Pratikakis
{"title":"鸟瞰图中的特征感知再加权 (FAR),用于自动驾驶应用中基于激光雷达的 3D 物体检测","authors":"Georgios Zamanakos ,&nbsp;Lazaros Tsochatzidis ,&nbsp;Angelos Amanatiadis ,&nbsp;Ioannis Pratikakis","doi":"10.1016/j.robot.2024.104664","DOIUrl":null,"url":null,"abstract":"<div><p>3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at <span>https://github.com/grgzam/FAR</span><svg><path></path></svg>.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Aware Re-weighting (FAR) in Bird’s Eye View for LiDAR-based 3D object detection in autonomous driving applications\",\"authors\":\"Georgios Zamanakos ,&nbsp;Lazaros Tsochatzidis ,&nbsp;Angelos Amanatiadis ,&nbsp;Ioannis Pratikakis\",\"doi\":\"10.1016/j.robot.2024.104664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at <span>https://github.com/grgzam/FAR</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000472\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000472","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

三维物体检测是自动驾驶车辆感知的关键因素。激光雷达传感器通常用于感知周围区域,以点云的形式生成稀疏的场景表示。目前的趋势是使用深度学习神经网络架构来预测三维边界框。绝大多数架构都直接处理激光雷达点云,但由于计算和内存限制,它们会在某些时候将输入压缩为二维鸟瞰图(BEV)表示。在这项工作中,我们提出了一种新颖的二维神经网络架构,即 "特征感知再加权网络"(Feature Aware Re-weighting Network),通过注意力机制在 BEV 中使用本地上下文进行特征提取,从而提高基于激光雷达的探测器的三维检测性能。在五个最先进的检测器和三个基准数据集(即 KITTI、Waymo 和 nuScenes)上进行的广泛实验证明了所提方法在检测性能和最小新增计算负担方面的有效性。我们在 https://github.com/grgzam/FAR 上发布了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Aware Re-weighting (FAR) in Bird’s Eye View for LiDAR-based 3D object detection in autonomous driving applications

3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at https://github.com/grgzam/FAR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信