{"title":"鸟瞰图中的特征感知再加权 (FAR),用于自动驾驶应用中基于激光雷达的 3D 物体检测","authors":"Georgios Zamanakos , Lazaros Tsochatzidis , Angelos Amanatiadis , Ioannis Pratikakis","doi":"10.1016/j.robot.2024.104664","DOIUrl":null,"url":null,"abstract":"<div><p>3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at <span>https://github.com/grgzam/FAR</span><svg><path></path></svg>.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Aware Re-weighting (FAR) in Bird’s Eye View for LiDAR-based 3D object detection in autonomous driving applications\",\"authors\":\"Georgios Zamanakos , Lazaros Tsochatzidis , Angelos Amanatiadis , Ioannis Pratikakis\",\"doi\":\"10.1016/j.robot.2024.104664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at <span>https://github.com/grgzam/FAR</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000472\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000472","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Feature Aware Re-weighting (FAR) in Bird’s Eye View for LiDAR-based 3D object detection in autonomous driving applications
3D object detection is a key element for the perception of autonomous vehicles. LiDAR sensors are commonly used to perceive the surrounding area, producing a sparse representation of the scene in the form of a point cloud. The current trend is to use deep learning neural network architectures that predict 3D bounding boxes. The vast majority of architectures process the LiDAR point cloud directly but, due to computation and memory constraints, at some point they compress the input to a 2D Bird’s Eye View (BEV) representation. In this work, we propose a novel 2D neural network architecture, namely the Feature Aware Re-weighting Network, for feature extraction in BEV using local context via an attention mechanism, to improve the 3D detection performance of LiDAR-based detectors. Extensive experiments on five state-of-the-art detectors and three benchmarking datasets, namely KITTI, Waymo and nuScenes, demonstrate the effectiveness of the proposed method in terms of both detection performance and minimal added computational burden. We release our code at https://github.com/grgzam/FAR.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.