Chuantian Yang , Peng Lv , Huaxin Han , Xue Xiao , Chen Xu , Robert G. Gilbert , Enpeng Li
{"title":"白酒发酵过程中高粱淀粉细微结构变化的研究","authors":"Chuantian Yang , Peng Lv , Huaxin Han , Xue Xiao , Chen Xu , Robert G. Gilbert , Enpeng Li","doi":"10.1016/j.foodhyd.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>In fermentation to produce the alcoholic liquor baijiu, sorghum starch is the main carbohydrate source, being hydrolyzed and converted into ethanol and aromatics. The mechanisms of starch hydrolysis which affect fermentation quality and efficiency are not fully understood. To investigate this, three sorghum varieties were used as fermentation material, with two fermentation methods. Changes in the amounts of various components and in starch molecular structure in lees (sediment) during fermentation were investigated. The lees from waxy sorghum had higher fermentation rates and saccharification power than those from normal sorghum in the early stage of fermentation, but decreased below those of normal sorghum in the end stage of fermentation, due to increased accumulation of acid, which inhibited enzyme activities, and even stopped fermentation. The chain-length distributions of both amylopectin and amylose in the lees did not show significant changes with fermentation, showing that starch in sorghum grain cannot be hydrolyzed directly, but only by hydrolysis of starch leached from the grain into the water; this is in accord with data from electron micrographs indicating that starch hydrolysis happened in the leachate rather than in the lees. This information can help manufacturers fine-tune their processes to improve production processes and product.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"152 ","pages":"Article 109905"},"PeriodicalIF":11.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268005X24001796/pdfft?md5=954952ff14959519b67d14416459b8c4&pid=1-s2.0-S0268005X24001796-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of changes in the fine structure of sorghum starch in the baijiu fermentation process\",\"authors\":\"Chuantian Yang , Peng Lv , Huaxin Han , Xue Xiao , Chen Xu , Robert G. Gilbert , Enpeng Li\",\"doi\":\"10.1016/j.foodhyd.2024.109905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In fermentation to produce the alcoholic liquor baijiu, sorghum starch is the main carbohydrate source, being hydrolyzed and converted into ethanol and aromatics. The mechanisms of starch hydrolysis which affect fermentation quality and efficiency are not fully understood. To investigate this, three sorghum varieties were used as fermentation material, with two fermentation methods. Changes in the amounts of various components and in starch molecular structure in lees (sediment) during fermentation were investigated. The lees from waxy sorghum had higher fermentation rates and saccharification power than those from normal sorghum in the early stage of fermentation, but decreased below those of normal sorghum in the end stage of fermentation, due to increased accumulation of acid, which inhibited enzyme activities, and even stopped fermentation. The chain-length distributions of both amylopectin and amylose in the lees did not show significant changes with fermentation, showing that starch in sorghum grain cannot be hydrolyzed directly, but only by hydrolysis of starch leached from the grain into the water; this is in accord with data from electron micrographs indicating that starch hydrolysis happened in the leachate rather than in the lees. This information can help manufacturers fine-tune their processes to improve production processes and product.</p></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"152 \",\"pages\":\"Article 109905\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24001796/pdfft?md5=954952ff14959519b67d14416459b8c4&pid=1-s2.0-S0268005X24001796-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24001796\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24001796","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Investigation of changes in the fine structure of sorghum starch in the baijiu fermentation process
In fermentation to produce the alcoholic liquor baijiu, sorghum starch is the main carbohydrate source, being hydrolyzed and converted into ethanol and aromatics. The mechanisms of starch hydrolysis which affect fermentation quality and efficiency are not fully understood. To investigate this, three sorghum varieties were used as fermentation material, with two fermentation methods. Changes in the amounts of various components and in starch molecular structure in lees (sediment) during fermentation were investigated. The lees from waxy sorghum had higher fermentation rates and saccharification power than those from normal sorghum in the early stage of fermentation, but decreased below those of normal sorghum in the end stage of fermentation, due to increased accumulation of acid, which inhibited enzyme activities, and even stopped fermentation. The chain-length distributions of both amylopectin and amylose in the lees did not show significant changes with fermentation, showing that starch in sorghum grain cannot be hydrolyzed directly, but only by hydrolysis of starch leached from the grain into the water; this is in accord with data from electron micrographs indicating that starch hydrolysis happened in the leachate rather than in the lees. This information can help manufacturers fine-tune their processes to improve production processes and product.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.