评估片状模拟器对自动驾驶系统测试的影响

IF 3.5 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mohammad Hossein Amini, Shervin Naseri, Shiva Nejati
{"title":"评估片状模拟器对自动驾驶系统测试的影响","authors":"Mohammad Hossein Amini, Shervin Naseri, Shiva Nejati","doi":"10.1007/s10664-023-10433-5","DOIUrl":null,"url":null,"abstract":"<p>Simulators are widely used to test Autonomous Driving Systems (ADS), but their potential flakiness can lead to inconsistent test results. We investigate test flakiness in simulation-based testing of ADS by addressing two key questions: (1) How do flaky ADS simulations impact automated testing that relies on randomized algorithms? and (2) Can machine learning (ML) effectively identify flaky ADS tests while decreasing the required number of test reruns? Our empirical results, obtained from two widely-used open-source ADS simulators and five diverse ADS test setups, show that test flakiness in ADS is a common occurrence and can significantly impact the test results obtained by randomized algorithms. Further, our ML classifiers effectively identify flaky ADS tests using only a single test run, achieving F1-scores of 85%, 82% and 96% for three different ADS test setups. Our classifiers significantly outperform our non-ML baseline, which requires executing tests at least twice, by 31%, 21%, and 13% in F1-score performance, respectively. We conclude with a discussion on the scope, implications and limitations of our study. We provide our complete replication package in a Github repository (Github paper 2023).</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"39 Suppl 1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the impact of flaky simulators on testing autonomous driving systems\",\"authors\":\"Mohammad Hossein Amini, Shervin Naseri, Shiva Nejati\",\"doi\":\"10.1007/s10664-023-10433-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simulators are widely used to test Autonomous Driving Systems (ADS), but their potential flakiness can lead to inconsistent test results. We investigate test flakiness in simulation-based testing of ADS by addressing two key questions: (1) How do flaky ADS simulations impact automated testing that relies on randomized algorithms? and (2) Can machine learning (ML) effectively identify flaky ADS tests while decreasing the required number of test reruns? Our empirical results, obtained from two widely-used open-source ADS simulators and five diverse ADS test setups, show that test flakiness in ADS is a common occurrence and can significantly impact the test results obtained by randomized algorithms. Further, our ML classifiers effectively identify flaky ADS tests using only a single test run, achieving F1-scores of 85%, 82% and 96% for three different ADS test setups. Our classifiers significantly outperform our non-ML baseline, which requires executing tests at least twice, by 31%, 21%, and 13% in F1-score performance, respectively. We conclude with a discussion on the scope, implications and limitations of our study. We provide our complete replication package in a Github repository (Github paper 2023).</p>\",\"PeriodicalId\":11525,\"journal\":{\"name\":\"Empirical Software Engineering\",\"volume\":\"39 Suppl 1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10664-023-10433-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-023-10433-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

模拟器被广泛用于测试自动驾驶系统(ADS),但其潜在的不稳定性会导致测试结果不一致。我们通过解决两个关键问题来研究基于模拟的 ADS 测试中的测试缺陷:(1) ADS 模拟缺陷如何影响依赖于随机算法的自动测试? (2) 机器学习(ML)能否有效识别 ADS 测试缺陷,同时减少所需的测试重试次数?我们从两个广泛使用的开源 ADS 模拟器和五个不同的 ADS 测试设置中获得的实证结果表明,ADS 中测试不稳定是一种常见现象,会严重影响随机算法获得的测试结果。此外,我们的 ML 分类器仅使用一次测试运行就能有效识别出不稳定的 ADS 测试,在三种不同的 ADS 测试设置中分别取得了 85%、82% 和 96% 的 F1 分数。我们的分类器在 F1 分数性能上分别比需要至少执行两次测试的非ML 基线高出 31%、21% 和 13%。最后,我们讨论了研究的范围、意义和局限性。我们在 Github 存储库中提供了完整的复制包(Github 论文 2023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating the impact of flaky simulators on testing autonomous driving systems

Evaluating the impact of flaky simulators on testing autonomous driving systems

Simulators are widely used to test Autonomous Driving Systems (ADS), but their potential flakiness can lead to inconsistent test results. We investigate test flakiness in simulation-based testing of ADS by addressing two key questions: (1) How do flaky ADS simulations impact automated testing that relies on randomized algorithms? and (2) Can machine learning (ML) effectively identify flaky ADS tests while decreasing the required number of test reruns? Our empirical results, obtained from two widely-used open-source ADS simulators and five diverse ADS test setups, show that test flakiness in ADS is a common occurrence and can significantly impact the test results obtained by randomized algorithms. Further, our ML classifiers effectively identify flaky ADS tests using only a single test run, achieving F1-scores of 85%, 82% and 96% for three different ADS test setups. Our classifiers significantly outperform our non-ML baseline, which requires executing tests at least twice, by 31%, 21%, and 13% in F1-score performance, respectively. We conclude with a discussion on the scope, implications and limitations of our study. We provide our complete replication package in a Github repository (Github paper 2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Empirical Software Engineering
Empirical Software Engineering 工程技术-计算机:软件工程
CiteScore
8.50
自引率
12.20%
发文量
169
审稿时长
>12 weeks
期刊介绍: Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories. The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings. Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信