Lauro Tomio, Anacé N. da Silva, S. Sabari, R. Kishor Kumar
{"title":"扰动玻色-爱因斯坦凝聚态中的动态涡旋产生和量子湍流","authors":"Lauro Tomio, Anacé N. da Silva, S. Sabari, R. Kishor Kumar","doi":"10.1007/s00601-024-01879-4","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamical vortex production and quantum turbulence emerging in periodic perturbed quasi-two-dimensional (q2D) Bose–Einstein condensates are reported by considering two distinct time-dependent approaches. In both cases, dynamical simulations were performed by solving the corresponding 2D mean-field Gross-Pitaevskii formalism. (1) In the first model, a binary mass-imbalanced system is slightly perturbed by a stirring time-dependent elliptic external potential. (2) In the second model, for single dipolar species confined in q2D geometry, a circularly moving external Gaussian-shaped obstacle is applied in the condensate, at a fixed radial position and constant rotational speed, enough for the production of vortex–antivortex pairs. Within the first case, vortex patterns are crystalized after enough longer period, whereas in the second case, the vortex pairs remains interacting dynamically inside the fluid. In both cases, the characteristic Kolmogorov spectral scaling law for turbulence can be observed at some short time interval.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Vortex Production and Quantum Turbulence in Perturbed Bose–Einstein Condensates\",\"authors\":\"Lauro Tomio, Anacé N. da Silva, S. Sabari, R. Kishor Kumar\",\"doi\":\"10.1007/s00601-024-01879-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamical vortex production and quantum turbulence emerging in periodic perturbed quasi-two-dimensional (q2D) Bose–Einstein condensates are reported by considering two distinct time-dependent approaches. In both cases, dynamical simulations were performed by solving the corresponding 2D mean-field Gross-Pitaevskii formalism. (1) In the first model, a binary mass-imbalanced system is slightly perturbed by a stirring time-dependent elliptic external potential. (2) In the second model, for single dipolar species confined in q2D geometry, a circularly moving external Gaussian-shaped obstacle is applied in the condensate, at a fixed radial position and constant rotational speed, enough for the production of vortex–antivortex pairs. Within the first case, vortex patterns are crystalized after enough longer period, whereas in the second case, the vortex pairs remains interacting dynamically inside the fluid. In both cases, the characteristic Kolmogorov spectral scaling law for turbulence can be observed at some short time interval.\\n</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01879-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01879-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamical Vortex Production and Quantum Turbulence in Perturbed Bose–Einstein Condensates
Dynamical vortex production and quantum turbulence emerging in periodic perturbed quasi-two-dimensional (q2D) Bose–Einstein condensates are reported by considering two distinct time-dependent approaches. In both cases, dynamical simulations were performed by solving the corresponding 2D mean-field Gross-Pitaevskii formalism. (1) In the first model, a binary mass-imbalanced system is slightly perturbed by a stirring time-dependent elliptic external potential. (2) In the second model, for single dipolar species confined in q2D geometry, a circularly moving external Gaussian-shaped obstacle is applied in the condensate, at a fixed radial position and constant rotational speed, enough for the production of vortex–antivortex pairs. Within the first case, vortex patterns are crystalized after enough longer period, whereas in the second case, the vortex pairs remains interacting dynamically inside the fluid. In both cases, the characteristic Kolmogorov spectral scaling law for turbulence can be observed at some short time interval.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).