{"title":"掺杂 VS2 作为可充电镁离子电池的高性能电极材料","authors":"Yingfang Li, Kunlun Wu, Haoran Luo, Meng Li, Lei Wang, Kuan Sun, Yujie Zheng","doi":"10.1103/physrevapplied.21.024038","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) vanadium disulfide (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>) can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mrow><mi mathvariant=\"normal\">g</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Herein, the effects of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping on the electrochemical performance of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>-doping concentration, and those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> are 2.17 times and 1.16 times higher than those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>, respectively. However, due to the strong bond between <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math>, the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms on 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> is relatively high (1.02 eV). Further introduction of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math>) can reduce the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms (0.80 eV) to a level comparable to that of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Meanwhile, the values of energy density and specific capacity of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math> are 1.53 times and 1.17 times those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Our results suggest that <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DopedVS2as a high-performance electrode material for rechargeableMg-ion batteries\",\"authors\":\"Yingfang Li, Kunlun Wu, Haoran Luo, Meng Li, Lei Wang, Kuan Sun, Yujie Zheng\",\"doi\":\"10.1103/physrevapplied.21.024038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) vanadium disulfide (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math>) can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mrow><mi mathvariant=\\\"normal\\\">g</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Herein, the effects of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math> doping and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math> codoping on the electrochemical performance of 2D <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math> used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>-doping concentration, and those of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>VSO</mi></math> are 2.17 times and 1.16 times higher than those of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math>, respectively. However, due to the strong bond between <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Mg</mi></math>, the diffusion barrier of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Mg</mi></math> atoms on 2D <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>VSO</mi></math> is relatively high (1.02 eV). Further introduction of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">C</mi></mrow></mrow></math> (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\\\"normal\\\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math>) can reduce the diffusion barrier of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Mg</mi></math> atoms (0.80 eV) to a level comparable to that of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Meanwhile, the values of energy density and specific capacity of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\\\"normal\\\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math> are 1.53 times and 1.17 times those of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Our results suggest that <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math> doping and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math> codoping of 2D <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>VS</mi><mn>2</mn></msub></math> are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.21.024038\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.21.024038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
二维二硫化钒(VS2)可以作为碱金属和碱土金属离子可逆插层和脱插层的通用宿主。然而,由于其能量密度较低(559 Wh g-1),其在可充电金属离子电池中的实际应用受到了限制。本文通过第一原理计算研究了 O 掺杂和 C,O 共掺对用作镁离子电池阳极的二维 VS2 电化学性能的影响。能量密度和比容量值都随着 O 掺杂浓度的增加而增加,VSO 的能量密度和比容量值分别是 VS2 的 2.17 倍和 1.16 倍。然而,由于 O 和镁之间的键很强,镁原子在二维 VSO 上的扩散势垒相对较高(1.02 eV)。进一步引入 C(VSO0.75C0.25)可将镁原子的扩散势垒(0.80 eV)降低到与 VS2 相当的水平。同时,VSO0.75C0.25 的能量密度和比容量值分别是 VS2 的 1.53 倍和 1.17 倍。我们的研究结果表明,二维 VS2 的 O 掺杂和 C,O 共掺杂是提高 MIB 整体性能的有效策略,这种掺杂策略应该可以推广到其他基于二维过渡金属二钙化物的可充电 MIB 上。
DopedVS2as a high-performance electrode material for rechargeableMg-ion batteries
Two-dimensional (2D) vanadium disulfide () can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh ). Herein, the effects of doping and codoping on the electrochemical performance of 2D used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing -doping concentration, and those of are 2.17 times and 1.16 times higher than those of , respectively. However, due to the strong bond between and , the diffusion barrier of atoms on 2D is relatively high (1.02 eV). Further introduction of () can reduce the diffusion barrier of atoms (0.80 eV) to a level comparable to that of . Meanwhile, the values of energy density and specific capacity of are 1.53 times and 1.17 times those of . Our results suggest that doping and codoping of 2D are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.