关于顺序莫诺动力学参数的可靠估算

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jack L. Elsey , Eric L. Miller , John A. Christ , Linda M. Abriola
{"title":"关于顺序莫诺动力学参数的可靠估算","authors":"Jack L. Elsey ,&nbsp;Eric L. Miller ,&nbsp;John A. Christ ,&nbsp;Linda M. Abriola","doi":"10.1016/j.jconhyd.2024.104323","DOIUrl":null,"url":null,"abstract":"<div><p>While dozens of studies have attempted to estimate the Monod kinetic parameters of microbial reductive dechlorination, published values in the literature vary by 2–6 orders of magnitude. This lack of consensus can be attributed in part to limitations of both experimental design and parameter estimation techniques. To address these issues, Hamiltonian Monte Carlo was used to produce more than one million sets of realistic simulated microcosm data under a variety of experimental conditions. These data were then employed in model fitting experiments using a number of parameter estimation algorithms for determining Monod kinetic parameters. Analysis of data from conventional triplicate microcosms yielded parameter estimates characterized by high collinearity, resulting in poor estimation accuracy and precision. Additionally, confidence intervals computed by commonly used classical regression analysis techniques contained true parameter values much less frequently than their nominal confidence levels. Use of an alternative experimental design, requiring the same number of analyses as conventional experiments but comprised of microcosms with varying initial chlorinated ethene concentrations, is shown to result in order-of-magnitude decreases in parameter uncertainty. A Metropolis algorithm which can be run on a typical personal computer is demonstrated to return more reliable parameter interval estimates.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the reliable estimation of sequential Monod kinetic parameters\",\"authors\":\"Jack L. Elsey ,&nbsp;Eric L. Miller ,&nbsp;John A. Christ ,&nbsp;Linda M. Abriola\",\"doi\":\"10.1016/j.jconhyd.2024.104323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While dozens of studies have attempted to estimate the Monod kinetic parameters of microbial reductive dechlorination, published values in the literature vary by 2–6 orders of magnitude. This lack of consensus can be attributed in part to limitations of both experimental design and parameter estimation techniques. To address these issues, Hamiltonian Monte Carlo was used to produce more than one million sets of realistic simulated microcosm data under a variety of experimental conditions. These data were then employed in model fitting experiments using a number of parameter estimation algorithms for determining Monod kinetic parameters. Analysis of data from conventional triplicate microcosms yielded parameter estimates characterized by high collinearity, resulting in poor estimation accuracy and precision. Additionally, confidence intervals computed by commonly used classical regression analysis techniques contained true parameter values much less frequently than their nominal confidence levels. Use of an alternative experimental design, requiring the same number of analyses as conventional experiments but comprised of microcosms with varying initial chlorinated ethene concentrations, is shown to result in order-of-magnitude decreases in parameter uncertainty. A Metropolis algorithm which can be run on a typical personal computer is demonstrated to return more reliable parameter interval estimates.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000275\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

虽然已有数十项研究试图估算微生物还原脱氯的莫诺动力学参数,但文献中公布的数值相差 2-6 个数量级。缺乏共识的部分原因在于实验设计和参数估计技术的局限性。为了解决这些问题,我们使用汉密尔顿蒙特卡洛方法,在各种实验条件下生成了 100 多万组真实的模拟微观世界数据。然后在模型拟合实验中使用这些数据,并使用一些参数估计算法来确定莫诺动力学参数。对传统的一式三份微观世界数据进行分析,得出的参数估计值具有高度的共线性,导致估计的准确性和精确性较差。此外,常用的经典回归分析技术计算出的置信区间包含的真实参数值远低于其标称置信水平。使用另一种实验设计,需要的分析次数与传统实验相同,但由初始氯化乙烯浓度不同的微观池组成,结果表明,参数的不确定性呈数量级下降。实验还证明,可在普通个人电脑上运行的 Metropolis 算法可返回更可靠的参数区间估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the reliable estimation of sequential Monod kinetic parameters

While dozens of studies have attempted to estimate the Monod kinetic parameters of microbial reductive dechlorination, published values in the literature vary by 2–6 orders of magnitude. This lack of consensus can be attributed in part to limitations of both experimental design and parameter estimation techniques. To address these issues, Hamiltonian Monte Carlo was used to produce more than one million sets of realistic simulated microcosm data under a variety of experimental conditions. These data were then employed in model fitting experiments using a number of parameter estimation algorithms for determining Monod kinetic parameters. Analysis of data from conventional triplicate microcosms yielded parameter estimates characterized by high collinearity, resulting in poor estimation accuracy and precision. Additionally, confidence intervals computed by commonly used classical regression analysis techniques contained true parameter values much less frequently than their nominal confidence levels. Use of an alternative experimental design, requiring the same number of analyses as conventional experiments but comprised of microcosms with varying initial chlorinated ethene concentrations, is shown to result in order-of-magnitude decreases in parameter uncertainty. A Metropolis algorithm which can be run on a typical personal computer is demonstrated to return more reliable parameter interval estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信