质谱分析机器学习的最新进展

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Armen G. Beck, Matthew Muhoberac, Caitlin E. Randolph, Connor H. Beveridge, Prageeth R. Wijewardhane, Hilkka I. Kenttämaa and Gaurav Chopra*, 
{"title":"质谱分析机器学习的最新进展","authors":"Armen G. Beck,&nbsp;Matthew Muhoberac,&nbsp;Caitlin E. Randolph,&nbsp;Connor H. Beveridge,&nbsp;Prageeth R. Wijewardhane,&nbsp;Hilkka I. Kenttämaa and Gaurav Chopra*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00060","DOIUrl":null,"url":null,"abstract":"<p >Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00060","citationCount":"0","resultStr":"{\"title\":\"Recent Developments in Machine Learning for Mass Spectrometry\",\"authors\":\"Armen G. Beck,&nbsp;Matthew Muhoberac,&nbsp;Caitlin E. Randolph,&nbsp;Connor H. Beveridge,&nbsp;Prageeth R. Wijewardhane,&nbsp;Hilkka I. Kenttämaa and Gaurav Chopra*,&nbsp;\",\"doi\":\"10.1021/acsmeasuresciau.3c00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

质谱(MS)数据的统计分析和建模有着悠久而丰富的历史,一些基于质谱的现代应用都使用了统计和化学计量方法。最近,由于计算硬件的进步以及人工神经网络(ANN)和深度学习架构新算法的开发,机器学习(ML)经历了一次复兴。此外,新的人工神经网络和深度学习架构最近在科学、工程和社会的多个领域取得了成功,进一步加强了 ML 领域。重要的是,现代 ML 方法和架构为 MS 相关任务提供了新的方法,这些方法目前已在质谱成像和蛋白质组学等多个基于 MS 的热门子学科中被广泛采用。在此,我们旨在对与 MS 相关的 ML 方法的实际方面进行介绍性总结。此外,我们还将对 ML 与基于 MS 的技术相结合方面的最新发展进行综述,同时对该领域的未来发展方向提出重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent Developments in Machine Learning for Mass Spectrometry

Recent Developments in Machine Learning for Mass Spectrometry

Recent Developments in Machine Learning for Mass Spectrometry

Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信