等离子体膜水蒸发蛋白在鳗草种子萌发和叶片水合过程中的水分调节功能

IF 1.9 4区 生物学 Q2 MARINE & FRESHWATER BIOLOGY
Ken-ichi Yanada, Kaho Kondo, Natsumi Ino, Yukiko Bando, Keita Kurokawa, Ichiro Tanaka, Hajime Shiota
{"title":"等离子体膜水蒸发蛋白在鳗草种子萌发和叶片水合过程中的水分调节功能","authors":"Ken-ichi Yanada,&nbsp;Kaho Kondo,&nbsp;Natsumi Ino,&nbsp;Yukiko Bando,&nbsp;Keita Kurokawa,&nbsp;Ichiro Tanaka,&nbsp;Hajime Shiota","doi":"10.1016/j.aquabot.2024.103760","DOIUrl":null,"url":null,"abstract":"<div><p>Eelgrass (<em>Zostera marina</em>) is a marine angiosperm distributed in shallow seas that has a unique mechanism for regulating water content. Water transfer across the plasma membrane is facilitated by aquaporins, which are membrane proteins. In this study, we investigated the physiological functions of plasma membrane intrinsic proteins (PIPs) in eelgrass. <em>ZoPIP1;1</em> and <em>ZoPIP2;1</em> in eelgrass leaves were amplified by RT-PCR. Both ZoPIPs localized to the plasma membrane, and only ZoPIP2;1 showed water permeability. <em>ZoPIP1;1</em> and <em>ZoPIP2;1</em> were expressed in all tissues except male flowers. <em>ZoPIP</em>s were expressed during seed and fruit development, and their expression levels were low in mature seeds and elevated in germinating seeds. Moisture content decreased in the later phases of seed development and increased during seed germination. These findings imply that ZoPIPs participate in water uptake during seed germination. In leaves, <em>ZoPIP</em> expression was upregulated by dehydration but downregulated by rehydration. Water reabsorption of leaves was inhibited by HgCl<sub>2</sub>, an inhibitor of aquaporins. These findings indicate that ZoPIPs are upregulated by dehydration during extremely low tides and promote water uptake when the tide turns. Therefore, eelgrass PIPs function in moisture regulation during growth, seed germination, and the flood-ebb tidal cycle in seawater.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"192 ","pages":"Article 103760"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma membrane aquaporins function in moisture regulation during seed germination and leaf hydration in eelgrass\",\"authors\":\"Ken-ichi Yanada,&nbsp;Kaho Kondo,&nbsp;Natsumi Ino,&nbsp;Yukiko Bando,&nbsp;Keita Kurokawa,&nbsp;Ichiro Tanaka,&nbsp;Hajime Shiota\",\"doi\":\"10.1016/j.aquabot.2024.103760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Eelgrass (<em>Zostera marina</em>) is a marine angiosperm distributed in shallow seas that has a unique mechanism for regulating water content. Water transfer across the plasma membrane is facilitated by aquaporins, which are membrane proteins. In this study, we investigated the physiological functions of plasma membrane intrinsic proteins (PIPs) in eelgrass. <em>ZoPIP1;1</em> and <em>ZoPIP2;1</em> in eelgrass leaves were amplified by RT-PCR. Both ZoPIPs localized to the plasma membrane, and only ZoPIP2;1 showed water permeability. <em>ZoPIP1;1</em> and <em>ZoPIP2;1</em> were expressed in all tissues except male flowers. <em>ZoPIP</em>s were expressed during seed and fruit development, and their expression levels were low in mature seeds and elevated in germinating seeds. Moisture content decreased in the later phases of seed development and increased during seed germination. These findings imply that ZoPIPs participate in water uptake during seed germination. In leaves, <em>ZoPIP</em> expression was upregulated by dehydration but downregulated by rehydration. Water reabsorption of leaves was inhibited by HgCl<sub>2</sub>, an inhibitor of aquaporins. These findings indicate that ZoPIPs are upregulated by dehydration during extremely low tides and promote water uptake when the tide turns. Therefore, eelgrass PIPs function in moisture regulation during growth, seed germination, and the flood-ebb tidal cycle in seawater.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"192 \",\"pages\":\"Article 103760\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000123\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000123","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鳗草(Zostera marina)是一种分布在浅海的海洋被子植物,具有独特的含水量调节机制。水通过质膜的转移是由膜蛋白水蒸发蛋白(aquaporins)促进的。在这项研究中,我们研究了黄鳝质膜固有蛋白(PIPs)的生理功能。通过 RT-PCR 扩增了黄鳝叶片中的 ZoPIP1;1 和 ZoPIP2;1。两种 ZoPIP 都定位于质膜,只有 ZoPIP2;1 具有透水性。除雄花外,ZoPIP1;1 和 ZoPIP2;1 在所有组织中都有表达。ZoPIPs 在种子和果实发育过程中表达,其表达水平在成熟种子中较低,在发芽种子中较高。水分含量在种子发育后期降低,而在种子萌发期升高。这些发现意味着 ZoPIPs 参与了种子萌发过程中的水分吸收。在叶片中,ZoPIP 的表达受脱水影响而上调,但受复水影响而下调。叶片的水分重吸收受到盐酸汞(一种水汽蛋白抑制剂)的抑制。这些研究结果表明,ZoPIPs 在极低潮时会因脱水而上调,而在潮汐转向时则会促进水分吸收。因此,在生长、种子萌发和海水中的洪-退潮周期中,黄颡鱼 PIPs 起着调节水分的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma membrane aquaporins function in moisture regulation during seed germination and leaf hydration in eelgrass

Eelgrass (Zostera marina) is a marine angiosperm distributed in shallow seas that has a unique mechanism for regulating water content. Water transfer across the plasma membrane is facilitated by aquaporins, which are membrane proteins. In this study, we investigated the physiological functions of plasma membrane intrinsic proteins (PIPs) in eelgrass. ZoPIP1;1 and ZoPIP2;1 in eelgrass leaves were amplified by RT-PCR. Both ZoPIPs localized to the plasma membrane, and only ZoPIP2;1 showed water permeability. ZoPIP1;1 and ZoPIP2;1 were expressed in all tissues except male flowers. ZoPIPs were expressed during seed and fruit development, and their expression levels were low in mature seeds and elevated in germinating seeds. Moisture content decreased in the later phases of seed development and increased during seed germination. These findings imply that ZoPIPs participate in water uptake during seed germination. In leaves, ZoPIP expression was upregulated by dehydration but downregulated by rehydration. Water reabsorption of leaves was inhibited by HgCl2, an inhibitor of aquaporins. These findings indicate that ZoPIPs are upregulated by dehydration during extremely low tides and promote water uptake when the tide turns. Therefore, eelgrass PIPs function in moisture regulation during growth, seed germination, and the flood-ebb tidal cycle in seawater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Botany
Aquatic Botany 生物-海洋与淡水生物学
CiteScore
3.80
自引率
5.60%
发文量
70
审稿时长
6 months
期刊介绍: Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信