对称随机 p-Stokes 系统的时间规律性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jörn Wichmann
{"title":"对称随机 p-Stokes 系统的时间规律性","authors":"Jörn Wichmann","doi":"10.1007/s00021-024-00852-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study the symmetric stochastic <i>p</i>-Stokes system, <span>\\(p \\in (1,\\infty )\\)</span>, in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost <span>\\(-1/2\\)</span> temporal derivatives on a Besov scale. Second, we verify that the velocity <i>u</i> of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient <span>\\(V(\\mathbb {\\epsilon } u) = (\\kappa + \\left| \\mathbb {\\epsilon } u\\right| )^{(p-2)/2} \\mathbb {\\epsilon } u\\)</span>, <span>\\(\\kappa \\ge 0\\)</span>, which measures the ellipticity of the <i>p</i>-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00852-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Temporal Regularity of Symmetric Stochastic p-Stokes Systems\",\"authors\":\"Jörn Wichmann\",\"doi\":\"10.1007/s00021-024-00852-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the symmetric stochastic <i>p</i>-Stokes system, <span>\\\\(p \\\\in (1,\\\\infty )\\\\)</span>, in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost <span>\\\\(-1/2\\\\)</span> temporal derivatives on a Besov scale. Second, we verify that the velocity <i>u</i> of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient <span>\\\\(V(\\\\mathbb {\\\\epsilon } u) = (\\\\kappa + \\\\left| \\\\mathbb {\\\\epsilon } u\\\\right| )^{(p-2)/2} \\\\mathbb {\\\\epsilon } u\\\\)</span>, <span>\\\\(\\\\kappa \\\\ge 0\\\\)</span>, which measures the ellipticity of the <i>p</i>-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00852-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00852-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00852-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有界域中的对称随机 p-Stokes 系统(p \in (1,\infty )\ )。结果有两个方面:首先,我们证明了在解析弱解的情况下,与无发散随机力相关的随机压力在贝索夫尺度上具有几乎(-1/2)的时间导数。其次,我们验证了强解的速度 u 服从指数尼克尔斯基空间的 1/2 时间导数。此外,我们证明了非线性对称梯度(V(\mathbb {\epsilon } u) = (\kappa + \left| \mathbb {\epsilon } u\right| )^{(p-2)/2} \mathbb {\epsilon } u\)、\(\kappa \ge 0\) 测量 p-Stokes 系统的椭圆度,在 Nikolskii 空间有 1/2 的时间导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Regularity of Symmetric Stochastic p-Stokes Systems

We study the symmetric stochastic p-Stokes system, \(p \in (1,\infty )\), in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost \(-1/2\) temporal derivatives on a Besov scale. Second, we verify that the velocity u of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient \(V(\mathbb {\epsilon } u) = (\kappa + \left| \mathbb {\epsilon } u\right| )^{(p-2)/2} \mathbb {\epsilon } u\)\(\kappa \ge 0\), which measures the ellipticity of the p-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信