{"title":"熵指数衰减的狄拉克算子","authors":"Pavel Gubkin","doi":"10.1007/s00365-024-09678-0","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Weyl function of the one-dimensional Dirac operator on the half-line <span>\\({\\mathbb {R}}_+\\)</span> with exponentially decaying entropy extends meromorphically into the horizontal strip <span>\\(\\{0\\geqslant \\mathop {\\textrm{Im}}\\nolimits z > -\\delta \\}\\)</span> for some <span>\\(\\delta > 0\\)</span> depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac Operators with Exponentially Decaying Entropy\",\"authors\":\"Pavel Gubkin\",\"doi\":\"10.1007/s00365-024-09678-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the Weyl function of the one-dimensional Dirac operator on the half-line <span>\\\\({\\\\mathbb {R}}_+\\\\)</span> with exponentially decaying entropy extends meromorphically into the horizontal strip <span>\\\\(\\\\{0\\\\geqslant \\\\mathop {\\\\textrm{Im}}\\\\nolimits z > -\\\\delta \\\\}\\\\)</span> for some <span>\\\\(\\\\delta > 0\\\\)</span> depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.</p>\",\"PeriodicalId\":50621,\"journal\":{\"name\":\"Constructive Approximation\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Approximation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09678-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09678-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dirac Operators with Exponentially Decaying Entropy
We prove that the Weyl function of the one-dimensional Dirac operator on the half-line \({\mathbb {R}}_+\) with exponentially decaying entropy extends meromorphically into the horizontal strip \(\{0\geqslant \mathop {\textrm{Im}}\nolimits z > -\delta \}\) for some \(\delta > 0\) depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.
期刊介绍:
Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.