具有公平意识的动态环境响应式在线元学习

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen
{"title":"具有公平意识的动态环境响应式在线元学习","authors":"Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen","doi":"10.1145/3648684","DOIUrl":null,"url":null,"abstract":"<p>The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the <i>i.i.d</i> (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"11 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness\",\"authors\":\"Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen\",\"doi\":\"10.1145/3648684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the <i>i.i.d</i> (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3648684\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648684","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

公平意识在线学习框架已成为终身持续学习背景下的一种有效工具。在这种情况下,学习者的目标是随着时间的推移逐步获得新任务,同时还要保证各种受保护的子人群(如种族和性别)在完成新任务时的统计均等性。当前方法的一个重要局限在于,它们严重依赖于数据的 i.i.d(独立且同分布)假设,从而导致对框架进行静态遗憾分析。然而,需要注意的是,在任务采样来自不同分布的动态环境中,实现低静态遗憾并不一定能转化为强大的性能。在本文中,为了应对不断变化的环境中公平感知在线学习的挑战,我们通过将长期公平性约束纳入强适应性损失后悔框架,引入了一种独特的后悔度量--FairSAR。此外,为了确定每个时间步的最优模型参数,我们引入了一种创新的自适应公平感知在线元学习算法,简称为 FairSAOML。该算法通过有效管理偏差控制和模型精度,具有适应动态环境的能力。该问题的框架为双级凸凹优化,同时考虑模型的主参数和双参数,这两个参数分别与模型的准确性和公平性属性有关。理论分析得出了损失遗憾和违反公平性约束累积的亚线性上限。我们在动态环境中的各种真实数据集上进行的实验评估表明,我们提出的 FairSAOML 算法始终优于植根于最先进的先验在线学习方法的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness

The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the i.i.d (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信