Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen
{"title":"具有公平意识的动态环境响应式在线元学习","authors":"Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen","doi":"10.1145/3648684","DOIUrl":null,"url":null,"abstract":"<p>The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the <i>i.i.d</i> (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"11 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness\",\"authors\":\"Chen Zhao, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan, Feng Chen\",\"doi\":\"10.1145/3648684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the <i>i.i.d</i> (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3648684\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648684","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness
The fairness-aware online learning framework has emerged as a potent tool within the context of continuous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as race and gender, when it comes to the newly introduced tasks. A significant limitation of current approaches lies in their heavy reliance on the i.i.d (independent and identically distributed) assumption concerning data, leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static regret does not necessarily translate to strong performance in dynamic environments characterized by tasks sampled from diverse distributions. In this paper, to tackle the fairness-aware online learning challenge in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model parameter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm, referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by effectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and the cumulative violation of fairness constraints. Our experimental evaluation on various real-world datasets in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms alternative approaches rooted in the most advanced prior online learning methods.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.