在深度学习中,Flipover 优于 Dropout

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxuan Liang, Chuang Niu, Pingkun Yan, Ge Wang
{"title":"在深度学习中,Flipover 优于 Dropout","authors":"Yuxuan Liang, Chuang Niu, Pingkun Yan, Ge Wang","doi":"10.1186/s42492-024-00153-y","DOIUrl":null,"url":null,"abstract":"Flipover, an enhanced dropout technique, is introduced to improve the robustness of artificial neural networks. In contrast to dropout, which involves randomly removing certain neurons and their connections, flipover randomly selects neurons and reverts their outputs using a negative multiplier during training. This approach offers stronger regularization than conventional dropout, refining model performance by (1) mitigating overfitting, matching or even exceeding the efficacy of dropout; (2) amplifying robustness to noise; and (3) enhancing resilience against adversarial attacks. Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flipover outperforms dropout in deep learning\",\"authors\":\"Yuxuan Liang, Chuang Niu, Pingkun Yan, Ge Wang\",\"doi\":\"10.1186/s42492-024-00153-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flipover, an enhanced dropout technique, is introduced to improve the robustness of artificial neural networks. In contrast to dropout, which involves randomly removing certain neurons and their connections, flipover randomly selects neurons and reverts their outputs using a negative multiplier during training. This approach offers stronger regularization than conventional dropout, refining model performance by (1) mitigating overfitting, matching or even exceeding the efficacy of dropout; (2) amplifying robustness to noise; and (3) enhancing resilience against adversarial attacks. Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-024-00153-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00153-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

翻转(Flipover)是一种增强的剔除技术,用于提高人工神经网络的鲁棒性。与随机移除某些神经元及其连接的 dropout 相比,flipover 是在训练过程中随机选择神经元并使用负乘数还原其输出。这种方法比传统的剔除方法提供了更强的正则化,通过以下方式完善了模型的性能:(1)减轻过拟合,与剔除的功效相匹配甚至超过;(2)增强对噪声的鲁棒性;以及(3)增强对对抗性攻击的复原力。在各种神经网络中进行的大量实验证实了翻转在深度学习中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flipover outperforms dropout in deep learning
Flipover, an enhanced dropout technique, is introduced to improve the robustness of artificial neural networks. In contrast to dropout, which involves randomly removing certain neurons and their connections, flipover randomly selects neurons and reverts their outputs using a negative multiplier during training. This approach offers stronger regularization than conventional dropout, refining model performance by (1) mitigating overfitting, matching or even exceeding the efficacy of dropout; (2) amplifying robustness to noise; and (3) enhancing resilience against adversarial attacks. Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信