{"title":"葡萄糖诱导ER应激反应介导的腹膜间皮细胞死亡","authors":"Junichi Nakamata, Hiroyuki Morimoto, Ryoko Baba, Keiji Kokubu, Tetsu Miyamoto","doi":"10.1267/ahc.23-00050","DOIUrl":null,"url":null,"abstract":"</p><p>Peritoneal dialysis (PD) fluid, which contains a high concentration of glucose, is involved in peritoneal damage after long-term use. The mechanisms through which glucose induces damage to the mesothelium have not been clearly elucidated. Although, endoplasmic reticulum (ER) stress response is associated with several diseases, the involvement of ER stress in peritoneal damage has not yet been demonstrated. Primary-cultured rat peritoneal mesothelial cells (RPMCs) and rat PD model were used to investigate the influence of glucose on the peritoneum. Cells treated with glucose were examined for cytotoxicity, induction of apoptosis, and activation of the ER stress pathway. Glucose treatment of RPMCs induced cell death at concentrations higher than 3%. Annexin V positive, that is a feature of apoptosis, occurred in dead cells. Treatment with glucose led to the activation of protein kinase R-like ER kinase (PERK) and eukaryotic translation initiation factor-2α (eIF-2α). Glucose also induced the expression and nuclear translocation of homologous protein C/EBP. Cell death was rescued by the integrated stress response inhibitor, ISRIB, which suppresses the integrated stress response pathway, including ER stress. Glucose in PD fluid induces PERK/eIF-2α-mediated ER stress in RPMCs, resulting in apoptosis. This cellular stress may cause peritoneal damage in patients receiving PD.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"28 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glucose Induces ER Stress Response-Mediated Peritoneal Mesothelial Cell Death\",\"authors\":\"Junichi Nakamata, Hiroyuki Morimoto, Ryoko Baba, Keiji Kokubu, Tetsu Miyamoto\",\"doi\":\"10.1267/ahc.23-00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Peritoneal dialysis (PD) fluid, which contains a high concentration of glucose, is involved in peritoneal damage after long-term use. The mechanisms through which glucose induces damage to the mesothelium have not been clearly elucidated. Although, endoplasmic reticulum (ER) stress response is associated with several diseases, the involvement of ER stress in peritoneal damage has not yet been demonstrated. Primary-cultured rat peritoneal mesothelial cells (RPMCs) and rat PD model were used to investigate the influence of glucose on the peritoneum. Cells treated with glucose were examined for cytotoxicity, induction of apoptosis, and activation of the ER stress pathway. Glucose treatment of RPMCs induced cell death at concentrations higher than 3%. Annexin V positive, that is a feature of apoptosis, occurred in dead cells. Treatment with glucose led to the activation of protein kinase R-like ER kinase (PERK) and eukaryotic translation initiation factor-2α (eIF-2α). Glucose also induced the expression and nuclear translocation of homologous protein C/EBP. Cell death was rescued by the integrated stress response inhibitor, ISRIB, which suppresses the integrated stress response pathway, including ER stress. Glucose in PD fluid induces PERK/eIF-2α-mediated ER stress in RPMCs, resulting in apoptosis. This cellular stress may cause peritoneal damage in patients receiving PD.</p>\\n<p></p>\",\"PeriodicalId\":6888,\"journal\":{\"name\":\"Acta Histochemica Et Cytochemica\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Histochemica Et Cytochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1267/ahc.23-00050\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.23-00050","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
腹膜透析液中含有高浓度的葡萄糖,长期使用会造成腹膜损伤。葡萄糖诱导间皮细胞损伤的机制尚未明确阐明。虽然内质网(ER)应激反应与多种疾病有关,但ER应激反应参与腹膜损伤的情况尚未得到证实。研究人员利用原代培养的大鼠腹膜间皮细胞(RPMCs)和大鼠腹膜透析模型来研究葡萄糖对腹膜的影响。用葡萄糖处理的细胞被检测细胞毒性、诱导细胞凋亡和激活ER应激途径。当葡萄糖浓度高于 3% 时,葡萄糖处理 RPMCs 会诱导细胞死亡。死亡细胞的Annexin V呈阳性,这是细胞凋亡的一个特征。葡萄糖处理导致蛋白激酶 R 样 ER 激酶(PERK)和真核翻译起始因子-2α(eIF-2α)的激活。葡萄糖还诱导同源蛋白 C/EBP 的表达和核转位。综合应激反应抑制剂ISRIB可抑制包括ER应激反应在内的综合应激反应途径,从而挽救细胞死亡。腹膜透析液中的葡萄糖诱导 PERK/eIF-2α 介导的 RPMC 细胞ER应激,导致细胞凋亡。这种细胞应激可能会导致腹膜透析患者腹膜受损。
Glucose Induces ER Stress Response-Mediated Peritoneal Mesothelial Cell Death
Peritoneal dialysis (PD) fluid, which contains a high concentration of glucose, is involved in peritoneal damage after long-term use. The mechanisms through which glucose induces damage to the mesothelium have not been clearly elucidated. Although, endoplasmic reticulum (ER) stress response is associated with several diseases, the involvement of ER stress in peritoneal damage has not yet been demonstrated. Primary-cultured rat peritoneal mesothelial cells (RPMCs) and rat PD model were used to investigate the influence of glucose on the peritoneum. Cells treated with glucose were examined for cytotoxicity, induction of apoptosis, and activation of the ER stress pathway. Glucose treatment of RPMCs induced cell death at concentrations higher than 3%. Annexin V positive, that is a feature of apoptosis, occurred in dead cells. Treatment with glucose led to the activation of protein kinase R-like ER kinase (PERK) and eukaryotic translation initiation factor-2α (eIF-2α). Glucose also induced the expression and nuclear translocation of homologous protein C/EBP. Cell death was rescued by the integrated stress response inhibitor, ISRIB, which suppresses the integrated stress response pathway, including ER stress. Glucose in PD fluid induces PERK/eIF-2α-mediated ER stress in RPMCs, resulting in apoptosis. This cellular stress may cause peritoneal damage in patients receiving PD.
期刊介绍:
Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.