基于事件的制导和增量控制在固定翼无人飞行器着陆机动中的应用

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu
{"title":"基于事件的制导和增量控制在固定翼无人飞行器着陆机动中的应用","authors":"Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu","doi":"10.1007/s10846-024-02063-w","DOIUrl":null,"url":null,"abstract":"<p>Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers\",\"authors\":\"Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu\",\"doi\":\"10.1007/s10846-024-02063-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02063-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02063-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

考虑到固定翼无人飞行器在栖木着陆机动中的非线性和未知动力学特性,提出了一种基于事件的在线制导和增量控制方案。栖木着陆的制导轨迹必须是动态可行的,因此提出了一种基于事件的梯形配点优化方法。引入触发机制,合理利用计算资源,提高 PL 精度。此外,还提出了一种基于滤波器的增量非线性动态反向(F-INDI)控制与状态转换,以实现高攻角(AOA)下的鲁棒性轨迹跟踪。F-INDI 使用低通滤波器获得系统的增量动态,从而简化了设计过程。状态转换策略是将飞行路径角、AOA 和速度转换为两个复合动力学,从而避免了高 AOA 下控制增益的符号反转问题。稳定性分析表明,只有通过控制复合状态才能控制原始状态。仿真结果表明,提出的方案实现了较高的着陆精度和可靠的轨迹跟踪控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers

Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信