J.D. Aguilera , D. Arranz , A. Peña , P. Marín , M.C. Horrillo , P. de la Presa , D. Matatagui
{"title":"利用基于磁性纳米颗粒的磁性无线传感器实时监测呼气生物标记物","authors":"J.D. Aguilera , D. Arranz , A. Peña , P. Marín , M.C. Horrillo , P. de la Presa , D. Matatagui","doi":"10.1016/j.sbsr.2024.100629","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an innovative device with gas remote-sensing capability is proposed, which is based on the interaction between magnetic nanoparticles and gases associated with exhaled breath biomarkers that can have a metabolic origin. Magnetite (Fe₃O₄) nanoparticles of around 30 nm have been used. The gas molecules adsorbed on surface modulate the magnetization of the nanoparticles and magnetostatic surface spin waves (MSSW) propagated on an yttrium iron garnet (YIG) thin film are used to detect this modulation by the induced frequency shift. The optimization of the remote gas sensor has been carried out through simulations of a magnetic model. Simulations show the feasibility of developing a high-performance remote sensor by encapsulating the nanostructures in a polytetrafluoroethylene (PTFE) tube and detecting part per million changes in their magnetization. The results show the possibility of developing new, inexpensive, reusable, contactless magnetic gas sensors employing spin waves as transductor. The developed sensor shows a high sensitivity and selectivity to concentrations as low as 50 ppm of different breath biomarkers.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100629"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000114/pdfft?md5=60db8e376bfddb7b9fe62bf92822eb07&pid=1-s2.0-S2214180424000114-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-time monitoring of breath biomarkers using magnonic wireless sensor based on magnetic nanoparticles\",\"authors\":\"J.D. Aguilera , D. Arranz , A. Peña , P. Marín , M.C. Horrillo , P. de la Presa , D. Matatagui\",\"doi\":\"10.1016/j.sbsr.2024.100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, an innovative device with gas remote-sensing capability is proposed, which is based on the interaction between magnetic nanoparticles and gases associated with exhaled breath biomarkers that can have a metabolic origin. Magnetite (Fe₃O₄) nanoparticles of around 30 nm have been used. The gas molecules adsorbed on surface modulate the magnetization of the nanoparticles and magnetostatic surface spin waves (MSSW) propagated on an yttrium iron garnet (YIG) thin film are used to detect this modulation by the induced frequency shift. The optimization of the remote gas sensor has been carried out through simulations of a magnetic model. Simulations show the feasibility of developing a high-performance remote sensor by encapsulating the nanostructures in a polytetrafluoroethylene (PTFE) tube and detecting part per million changes in their magnetization. The results show the possibility of developing new, inexpensive, reusable, contactless magnetic gas sensors employing spin waves as transductor. The developed sensor shows a high sensitivity and selectivity to concentrations as low as 50 ppm of different breath biomarkers.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"43 \",\"pages\":\"Article 100629\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000114/pdfft?md5=60db8e376bfddb7b9fe62bf92822eb07&pid=1-s2.0-S2214180424000114-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Real-time monitoring of breath biomarkers using magnonic wireless sensor based on magnetic nanoparticles
In this paper, an innovative device with gas remote-sensing capability is proposed, which is based on the interaction between magnetic nanoparticles and gases associated with exhaled breath biomarkers that can have a metabolic origin. Magnetite (Fe₃O₄) nanoparticles of around 30 nm have been used. The gas molecules adsorbed on surface modulate the magnetization of the nanoparticles and magnetostatic surface spin waves (MSSW) propagated on an yttrium iron garnet (YIG) thin film are used to detect this modulation by the induced frequency shift. The optimization of the remote gas sensor has been carried out through simulations of a magnetic model. Simulations show the feasibility of developing a high-performance remote sensor by encapsulating the nanostructures in a polytetrafluoroethylene (PTFE) tube and detecting part per million changes in their magnetization. The results show the possibility of developing new, inexpensive, reusable, contactless magnetic gas sensors employing spin waves as transductor. The developed sensor shows a high sensitivity and selectivity to concentrations as low as 50 ppm of different breath biomarkers.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.