Hurieh Mohammadzadeh, Robabeh Jafari, Sara Khaleqpasand, Behnam Doudkanlouy Milan
{"title":"羟基磷灰石对 316 不锈钢上壳聚糖/明胶还原功能化氧化石墨烯涂层的形态和腐蚀行为的影响","authors":"Hurieh Mohammadzadeh, Robabeh Jafari, Sara Khaleqpasand, Behnam Doudkanlouy Milan","doi":"10.1007/s41779-024-00995-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxyapatite (HA)-based nanocomposite coatings on 316L stainless steel (SS316L) implants can be modified by components such as chitosan/gelatine (CS/Gel) and reduced and functionalized graphene oxide (rfGO) to improve antibacterial properties and biocompatibility. In this research, HA and rfGO were produced. HA-CS/Gel-rfGO nanocomposites with different HA values (200, 500, 800, and 1100 mg) were applied by electrophoretic deposition (EPD) at various voltages (80, 100, and 120 V). Analyzing HA and rfGO by XRD, SEM, and FTIR proved the successful synthesis. The contribution of HA and coating voltage was investigated on the morphology, microstructure, and corrosion behavior by morphological studies, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The possible intermolecular interactions between coating components were evaluated and found to be effective on the coating performance. Increasing HA reduced the cracks but caused unfavorable agglomerations and uneven distribution of the constituents in the coatings. Higher voltages caused voids and porosities. The coating at 1100-mg HA was porous but crack-free. The coating thickness increased by voltage and HA, from ~ 9.3 to 14.8 µm. Electrochemical polarization and EIS analysis in SBF solution showed that corrosion behavior is affected by coating morphology and bonding configurations among HA-CS/Gel-rfGO. The lowest corrosion rate occurred in the lowest HA (200 mg), with a corrosion resistance of 143,000 Ω.cm<sup>2</sup>. At constant HA, increasing the applied voltage significantly decreased the corrosion resistance from 23,046 to 15,000 Ω.cm<sup>2</sup>, and an induction bend occurred at 120 V. The corrosion mechanism was carefully investigated by an equivalent circuit with two time constants and corresponding dielectric capacitors.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 4","pages":"1031 - 1051"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of hydroxyapatite on the morphology and corrosion behavior of chitosan/gelatine-reduced functionalized graphene oxide coating on 316 stainless steel\",\"authors\":\"Hurieh Mohammadzadeh, Robabeh Jafari, Sara Khaleqpasand, Behnam Doudkanlouy Milan\",\"doi\":\"10.1007/s41779-024-00995-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydroxyapatite (HA)-based nanocomposite coatings on 316L stainless steel (SS316L) implants can be modified by components such as chitosan/gelatine (CS/Gel) and reduced and functionalized graphene oxide (rfGO) to improve antibacterial properties and biocompatibility. In this research, HA and rfGO were produced. HA-CS/Gel-rfGO nanocomposites with different HA values (200, 500, 800, and 1100 mg) were applied by electrophoretic deposition (EPD) at various voltages (80, 100, and 120 V). Analyzing HA and rfGO by XRD, SEM, and FTIR proved the successful synthesis. The contribution of HA and coating voltage was investigated on the morphology, microstructure, and corrosion behavior by morphological studies, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The possible intermolecular interactions between coating components were evaluated and found to be effective on the coating performance. Increasing HA reduced the cracks but caused unfavorable agglomerations and uneven distribution of the constituents in the coatings. Higher voltages caused voids and porosities. The coating at 1100-mg HA was porous but crack-free. The coating thickness increased by voltage and HA, from ~ 9.3 to 14.8 µm. Electrochemical polarization and EIS analysis in SBF solution showed that corrosion behavior is affected by coating morphology and bonding configurations among HA-CS/Gel-rfGO. The lowest corrosion rate occurred in the lowest HA (200 mg), with a corrosion resistance of 143,000 Ω.cm<sup>2</sup>. At constant HA, increasing the applied voltage significantly decreased the corrosion resistance from 23,046 to 15,000 Ω.cm<sup>2</sup>, and an induction bend occurred at 120 V. The corrosion mechanism was carefully investigated by an equivalent circuit with two time constants and corresponding dielectric capacitors.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"60 4\",\"pages\":\"1031 - 1051\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-024-00995-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-00995-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 316L 不锈钢(SS316L)植入物上的羟基磷灰石(HA)基纳米复合涂层可通过壳聚糖/明胶(CS/Gel)和还原及功能化氧化石墨烯(rfGO)等成分进行改性,以提高抗菌性能和生物相容性。本研究制备了 HA 和 rfGO。在不同电压(80、100 和 120 V)下通过电泳沉积(EPD)制备了不同 HA 值(200、500、800 和 1100 mg)的 HA-CS/Gel-rfGO 纳米复合材料。通过 XRD、SEM 和 FTIR 分析 HA 和 rfGO,证明了合成的成功。通过形态学研究、电化学阻抗谱(EIS)和电位极化,研究了 HA 和涂层电压对形貌、微观结构和腐蚀行为的影响。对涂层成分之间可能存在的分子间相互作用进行了评估,发现它们对涂层性能有影响。增加 HA 会减少裂纹,但会导致涂层中出现不利的团聚和成分分布不均。更高的电压会造成空隙和气孔。HA 值为 1100 毫克的涂层多孔但无裂纹。涂层厚度随电压和 HA 的增加而增加,从 ~ 9.3 微米增加到 14.8 微米。在 SBF 溶液中进行的电化学极化和 EIS 分析表明,腐蚀行为受涂层形态和 HA-CS/Gel-rfGO 之间的结合结构的影响。最低 HA(200 毫克)的腐蚀速率最低,耐腐蚀性为 143,000 Ω.cm2 。在 HA 不变的情况下,增加外加电压会显著降低腐蚀阻力,从 23,046 Ω.cm2 降至 15,000 Ω.cm2 ,并且在 120 V 电压下会出现感应弯曲。
The effect of hydroxyapatite on the morphology and corrosion behavior of chitosan/gelatine-reduced functionalized graphene oxide coating on 316 stainless steel
Hydroxyapatite (HA)-based nanocomposite coatings on 316L stainless steel (SS316L) implants can be modified by components such as chitosan/gelatine (CS/Gel) and reduced and functionalized graphene oxide (rfGO) to improve antibacterial properties and biocompatibility. In this research, HA and rfGO were produced. HA-CS/Gel-rfGO nanocomposites with different HA values (200, 500, 800, and 1100 mg) were applied by electrophoretic deposition (EPD) at various voltages (80, 100, and 120 V). Analyzing HA and rfGO by XRD, SEM, and FTIR proved the successful synthesis. The contribution of HA and coating voltage was investigated on the morphology, microstructure, and corrosion behavior by morphological studies, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The possible intermolecular interactions between coating components were evaluated and found to be effective on the coating performance. Increasing HA reduced the cracks but caused unfavorable agglomerations and uneven distribution of the constituents in the coatings. Higher voltages caused voids and porosities. The coating at 1100-mg HA was porous but crack-free. The coating thickness increased by voltage and HA, from ~ 9.3 to 14.8 µm. Electrochemical polarization and EIS analysis in SBF solution showed that corrosion behavior is affected by coating morphology and bonding configurations among HA-CS/Gel-rfGO. The lowest corrosion rate occurred in the lowest HA (200 mg), with a corrosion resistance of 143,000 Ω.cm2. At constant HA, increasing the applied voltage significantly decreased the corrosion resistance from 23,046 to 15,000 Ω.cm2, and an induction bend occurred at 120 V. The corrosion mechanism was carefully investigated by an equivalent circuit with two time constants and corresponding dielectric capacitors.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted