{"title":"使用改进型差分电压电流传输跨导放大器的浮动记忆电感仿真器及其应用","authors":"Rupam Das, Shireesh Kumar Rai, Bhawna Aggarwal","doi":"10.1007/s10470-024-02257-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a modified differential voltage current conveyor transconductance amplifier (MDVCCTA) based meminductor emulator has been proposed. The proposed meminductor is realized using one MDVCCTA, one resistor, and two grounded capacitors that leads to a very simple configuration. The emulator is working for a significant range of frequencies up to 80 MHz. The transient and non-volatility tests are found to be satisfactory. The corner and Monte Carlo analyses are done to verify the robustness of the proposed design. In addition, to assess the endurance of the recommended meminductor emulator, its workability with variations in supply voltage, temperature, and component values has been investigated. The pinched hysteresis loops that are fingerprints for the meminductor emulator are not deformed for any such variations. A comparison of suggested meminductor with those available in literature has been done based on several performance parameters. Two applications that demonstrate the viability of the suggested meminductor emulator have also been comprehended.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"119 3","pages":"475 - 496"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application\",\"authors\":\"Rupam Das, Shireesh Kumar Rai, Bhawna Aggarwal\",\"doi\":\"10.1007/s10470-024-02257-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a modified differential voltage current conveyor transconductance amplifier (MDVCCTA) based meminductor emulator has been proposed. The proposed meminductor is realized using one MDVCCTA, one resistor, and two grounded capacitors that leads to a very simple configuration. The emulator is working for a significant range of frequencies up to 80 MHz. The transient and non-volatility tests are found to be satisfactory. The corner and Monte Carlo analyses are done to verify the robustness of the proposed design. In addition, to assess the endurance of the recommended meminductor emulator, its workability with variations in supply voltage, temperature, and component values has been investigated. The pinched hysteresis loops that are fingerprints for the meminductor emulator are not deformed for any such variations. A comparison of suggested meminductor with those available in literature has been done based on several performance parameters. Two applications that demonstrate the viability of the suggested meminductor emulator have also been comprehended.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"119 3\",\"pages\":\"475 - 496\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-024-02257-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02257-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A floating meminductor emulator using modified differential voltage current conveyor transconductance amplifier and its application
In this paper, a modified differential voltage current conveyor transconductance amplifier (MDVCCTA) based meminductor emulator has been proposed. The proposed meminductor is realized using one MDVCCTA, one resistor, and two grounded capacitors that leads to a very simple configuration. The emulator is working for a significant range of frequencies up to 80 MHz. The transient and non-volatility tests are found to be satisfactory. The corner and Monte Carlo analyses are done to verify the robustness of the proposed design. In addition, to assess the endurance of the recommended meminductor emulator, its workability with variations in supply voltage, temperature, and component values has been investigated. The pinched hysteresis loops that are fingerprints for the meminductor emulator are not deformed for any such variations. A comparison of suggested meminductor with those available in literature has been done based on several performance parameters. Two applications that demonstrate the viability of the suggested meminductor emulator have also been comprehended.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.