{"title":"从两期大倾斜复合体衍生类别的重元素","authors":"Huabo Xu","doi":"10.1007/s10468-024-10258-w","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recollements of Derived Categories from Two-Term Big Tilting Complexes\",\"authors\":\"Huabo Xu\",\"doi\":\"10.1007/s10468-024-10258-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10258-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10258-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recollements of Derived Categories from Two-Term Big Tilting Complexes
We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.