从两期大倾斜复合体衍生类别的重元素

IF 0.5 4区 数学 Q3 MATHEMATICS
Huabo Xu
{"title":"从两期大倾斜复合体衍生类别的重元素","authors":"Huabo Xu","doi":"10.1007/s10468-024-10258-w","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1267 - 1285"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recollements of Derived Categories from Two-Term Big Tilting Complexes\",\"authors\":\"Huabo Xu\",\"doi\":\"10.1007/s10468-024-10258-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 2\",\"pages\":\"1267 - 1285\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10258-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10258-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了关联环上大倾斜复数的概念,它是对环上好倾斜模块和倾斜复数的同时概括。给定一个任意关联环上的两期大倾斜复数,我们证明其(派生)内态环的派生模块范畴是给定环的模块范畴和内态环的普遍局部化模块范畴的再互补。这个重归类概括了为投影维数至多为一的好倾斜模建立的重归类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recollements of Derived Categories from Two-Term Big Tilting Complexes

We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信