{"title":"从两期大倾斜复合体衍生类别的重元素","authors":"Huabo Xu","doi":"10.1007/s10468-024-10258-w","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1267 - 1285"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recollements of Derived Categories from Two-Term Big Tilting Complexes\",\"authors\":\"Huabo Xu\",\"doi\":\"10.1007/s10468-024-10258-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 2\",\"pages\":\"1267 - 1285\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10258-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10258-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Recollements of Derived Categories from Two-Term Big Tilting Complexes
We introduce the notion of big tilting complexes over associative rings, which is a simultaneous generalization of good tilting modules and tilting complexes over rings. Given a two-term big tilting complex over an arbitrary associative ring, we show that the derived module category of its (derived) endomorphism ring is a recollement of the one of the given ring and the one of a universal localization of the endomorphism ring. This recollement generalizes the one established for a good tilting module of projective dimension at most one.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.