{"title":"八边形网格衍生的纳米片和纳米管的分区可分辨性","authors":"Ali Al Khabyah, Ali N. A. Koam, Ali Ahmad","doi":"10.1155/2024/6222086","DOIUrl":null,"url":null,"abstract":"Chemical graph theory, a branch of computational and applied mathematics, covers a very wide range of topics. As a result, the world of applied sciences heavily relies on graph theory. The concept of partition dimension has significant importance in the field of chemical graph theory. Although certain graphs have bounded partition dimensions, a graph’s partition dimension may be constant. In this study, we look at two alternative chemical structures made of an octagonal grid: nanosheets and nanotubes. We determined the partition dimension of an octagonal grid-generated nanosheet to be 3, and the partition dimension of a nanotube to be limited from 4.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"70 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition Resolvability of Nanosheet and Nanotube Derived from Octagonal Grid\",\"authors\":\"Ali Al Khabyah, Ali N. A. Koam, Ali Ahmad\",\"doi\":\"10.1155/2024/6222086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical graph theory, a branch of computational and applied mathematics, covers a very wide range of topics. As a result, the world of applied sciences heavily relies on graph theory. The concept of partition dimension has significant importance in the field of chemical graph theory. Although certain graphs have bounded partition dimensions, a graph’s partition dimension may be constant. In this study, we look at two alternative chemical structures made of an octagonal grid: nanosheets and nanotubes. We determined the partition dimension of an octagonal grid-generated nanosheet to be 3, and the partition dimension of a nanotube to be limited from 4.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6222086\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6222086","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Partition Resolvability of Nanosheet and Nanotube Derived from Octagonal Grid
Chemical graph theory, a branch of computational and applied mathematics, covers a very wide range of topics. As a result, the world of applied sciences heavily relies on graph theory. The concept of partition dimension has significant importance in the field of chemical graph theory. Although certain graphs have bounded partition dimensions, a graph’s partition dimension may be constant. In this study, we look at two alternative chemical structures made of an octagonal grid: nanosheets and nanotubes. We determined the partition dimension of an octagonal grid-generated nanosheet to be 3, and the partition dimension of a nanotube to be limited from 4.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.