{"title":"胆汁酸的生物活性、机制、生产以及在预防和治疗传染病中的潜在应用","authors":"","doi":"10.1016/j.eng.2023.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>Infectious diseases are a global public health problem, with emerging and re-emerging infectious diseases on the rise worldwide. Therefore, their prevention and treatment are still major challenges. Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids, glucose, and energy. Bile acids have historically been utilized as first-line, valuable therapeutic agents for related metabolic and hepatobiliary diseases. Notably, bile acids are the major active ingredients of cow bezoar and bear bile, which are commonly used traditional Chinese medicines (TCMs) with the therapeutic effects of clearing heat, detoxification, and relieving wind and spasm. In recent years, the promising performance of bile acids against infectious diseases has attracted attention from the scientific community. This paper reviews for the first time the biological activities, possible mechanisms, production routes, and potential applications of bile acids in the treatment and prevention of infectious diseases. Compared with previous reviews, we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality. In addition, to ensure a stable supply of bile acids at affordable prices, it is necessary to clarify the biosynthesis of bile acids <em>in vivo</em>, which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis, biosynthesis, and chemoenzymatic synthesis. Finally, we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids. The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924000481/pdfft?md5=139bb9faa14d2c0fbb1d3c652e1b97b6&pid=1-s2.0-S2095809924000481-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infectious diseases are a global public health problem, with emerging and re-emerging infectious diseases on the rise worldwide. Therefore, their prevention and treatment are still major challenges. Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids, glucose, and energy. Bile acids have historically been utilized as first-line, valuable therapeutic agents for related metabolic and hepatobiliary diseases. Notably, bile acids are the major active ingredients of cow bezoar and bear bile, which are commonly used traditional Chinese medicines (TCMs) with the therapeutic effects of clearing heat, detoxification, and relieving wind and spasm. In recent years, the promising performance of bile acids against infectious diseases has attracted attention from the scientific community. This paper reviews for the first time the biological activities, possible mechanisms, production routes, and potential applications of bile acids in the treatment and prevention of infectious diseases. Compared with previous reviews, we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality. In addition, to ensure a stable supply of bile acids at affordable prices, it is necessary to clarify the biosynthesis of bile acids <em>in vivo</em>, which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis, biosynthesis, and chemoenzymatic synthesis. Finally, we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids. The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000481/pdfft?md5=139bb9faa14d2c0fbb1d3c652e1b97b6&pid=1-s2.0-S2095809924000481-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000481\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000481","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases
Infectious diseases are a global public health problem, with emerging and re-emerging infectious diseases on the rise worldwide. Therefore, their prevention and treatment are still major challenges. Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids, glucose, and energy. Bile acids have historically been utilized as first-line, valuable therapeutic agents for related metabolic and hepatobiliary diseases. Notably, bile acids are the major active ingredients of cow bezoar and bear bile, which are commonly used traditional Chinese medicines (TCMs) with the therapeutic effects of clearing heat, detoxification, and relieving wind and spasm. In recent years, the promising performance of bile acids against infectious diseases has attracted attention from the scientific community. This paper reviews for the first time the biological activities, possible mechanisms, production routes, and potential applications of bile acids in the treatment and prevention of infectious diseases. Compared with previous reviews, we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality. In addition, to ensure a stable supply of bile acids at affordable prices, it is necessary to clarify the biosynthesis of bile acids in vivo, which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis, biosynthesis, and chemoenzymatic synthesis. Finally, we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids. The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.