{"title":"梨花粉管特异性冷休克结构域蛋白 PbrCSP1 对梨花粉管的生长和抗寒性至关重要","authors":"","doi":"10.1007/s11032-024-01457-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Cold shock domain proteins (CSPs), initially identified in <em>Escherichia coli</em>, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and <em>Arabidopsis</em> have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (<em>Pyrus bretschneideri</em> Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of <em>PbrCSP1</em> significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of <em>PbrCSP1</em> promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PbrCSP1, a pollen tube–specific cold shock domain protein, is essential for the growth and cold resistance of pear pollen tubes\",\"authors\":\"\",\"doi\":\"10.1007/s11032-024-01457-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Cold shock domain proteins (CSPs), initially identified in <em>Escherichia coli</em>, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and <em>Arabidopsis</em> have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (<em>Pyrus bretschneideri</em> Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of <em>PbrCSP1</em> significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of <em>PbrCSP1</em> promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-024-01457-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01457-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
PbrCSP1, a pollen tube–specific cold shock domain protein, is essential for the growth and cold resistance of pear pollen tubes
Abstract
Cold shock domain proteins (CSPs), initially identified in Escherichia coli, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and Arabidopsis have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (Pyrus bretschneideri Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of PbrCSP1 significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of PbrCSP1 promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.