{"title":"计算消耗更少的自动驾驶汽车局部规划 NMPC 设计","authors":"B. Zhang, P. Fan, S. Tang, F. Gao, S. Zhen","doi":"10.1007/s12239-024-00029-3","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear Model Predictive Control (NMPC) is effective for local planning of automated vehicles, especially when there exist dynamical objects and multipe requirements. But it requires many computation resources for numerical optimization, which limits its practical application becase of the limited power of onboard unit. To extend the application range of the NMPC based local planner, the coupled nonlinear vehicle dynamics model is adopted based on the numerical analysis, which conversely requires much more discretization poits for acceptable accuracy. For better computation efficiency, Lagrange polynomials are used to discretize the vehicle dynamics model and objective function with less points and fine numerical accuracy. Furthermore, an adaptive strategy is designed to determine the order of Lagrange polynomials according to running state by numerical analysis of discretization error. Both acceleration effect and performance of the local planner designed by NMPC are validated by experimental tests under scenarios with multiple dynamical obstacles. The test results show that compared with the original one the accuracy and efficiency are improved by 74% and 60%, respectively.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"42 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMPC Design for Local Planning of Automated Vehicle with Less Computational Consumption\",\"authors\":\"B. Zhang, P. Fan, S. Tang, F. Gao, S. Zhen\",\"doi\":\"10.1007/s12239-024-00029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlinear Model Predictive Control (NMPC) is effective for local planning of automated vehicles, especially when there exist dynamical objects and multipe requirements. But it requires many computation resources for numerical optimization, which limits its practical application becase of the limited power of onboard unit. To extend the application range of the NMPC based local planner, the coupled nonlinear vehicle dynamics model is adopted based on the numerical analysis, which conversely requires much more discretization poits for acceptable accuracy. For better computation efficiency, Lagrange polynomials are used to discretize the vehicle dynamics model and objective function with less points and fine numerical accuracy. Furthermore, an adaptive strategy is designed to determine the order of Lagrange polynomials according to running state by numerical analysis of discretization error. Both acceleration effect and performance of the local planner designed by NMPC are validated by experimental tests under scenarios with multiple dynamical obstacles. The test results show that compared with the original one the accuracy and efficiency are improved by 74% and 60%, respectively.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00029-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00029-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
NMPC Design for Local Planning of Automated Vehicle with Less Computational Consumption
Nonlinear Model Predictive Control (NMPC) is effective for local planning of automated vehicles, especially when there exist dynamical objects and multipe requirements. But it requires many computation resources for numerical optimization, which limits its practical application becase of the limited power of onboard unit. To extend the application range of the NMPC based local planner, the coupled nonlinear vehicle dynamics model is adopted based on the numerical analysis, which conversely requires much more discretization poits for acceptable accuracy. For better computation efficiency, Lagrange polynomials are used to discretize the vehicle dynamics model and objective function with less points and fine numerical accuracy. Furthermore, an adaptive strategy is designed to determine the order of Lagrange polynomials according to running state by numerical analysis of discretization error. Both acceleration effect and performance of the local planner designed by NMPC are validated by experimental tests under scenarios with multiple dynamical obstacles. The test results show that compared with the original one the accuracy and efficiency are improved by 74% and 60%, respectively.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.