摄入抗生素改变了肠道微生物的组成,并影响了秋刺吸虫的发育和繁殖

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY
Yan Fu, Luo-Yan Zhang, Qing-Yi Zhao, Da-Ying Fu, Hong Yu, Jin Xu, Song Yang
{"title":"摄入抗生素改变了肠道微生物的组成,并影响了秋刺吸虫的发育和繁殖","authors":"Yan Fu, Luo-Yan Zhang, Qing-Yi Zhao, Da-Ying Fu, Hong Yu, Jin Xu, Song Yang","doi":"10.1007/s10340-024-01759-0","DOIUrl":null,"url":null,"abstract":"<p>A dynamic homeostasis between gut microbiome and the host is essential for animals. Antibiotics feeding may be a good way to study the function of microbes in insects due to efficiency and a linkage with pest control. Here, by using 16S rDNA sequencing, we show antibiotics feeding significantly altered the composition and diversity of microbes in different stages of <i>Spodoptera frugiperda</i> and showed dose dependent effects. Antibiotics ingestion resulted in a dramatic reduction of <i>Enterococcus</i> in larvae and <i>Klebsiella</i> in adults, but increase of <i>Weissella</i> in larvae and <i>Pseudomonas</i> in pupae and adults. <i>Enterococcus</i> spp in the lepidopteran gut may play a protective role against insect pathogens and <i>Klebsiella</i> spp may have positive effects on insect fecundity. Some strains from <i>Pseudomonas</i> and <i>Weissella</i> are pathogens or opportunistic pathogens. Further biological assay showed that antibiotics treatment significantly affected the fitness of treated insects and their untreated offspring, with treated insects and their offspring having longer developmental period but lower body weight, survival rate, flight capacity and fecundity than those of controls. Lepidopterans may rely on gut microbiome for some digestions and previous study indicated that antibiotics-induced dysbiosis of gut microbes affects many biological processes of <i>S. frugiperda</i>. Therefore, it is possible that antibiotics disrupted the homeostasis of gut microbes and the host, which then negatively affected the survival and reproduction of <i>S. frugiperda</i>. These findings contribute to a better understanding of the role of the microbiota in insects and will aid in the development of environmentally friendly management techniques for this pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotics ingestion altered the composition of gut microbes and affected the development and reproduction of the fall armyworm\",\"authors\":\"Yan Fu, Luo-Yan Zhang, Qing-Yi Zhao, Da-Ying Fu, Hong Yu, Jin Xu, Song Yang\",\"doi\":\"10.1007/s10340-024-01759-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dynamic homeostasis between gut microbiome and the host is essential for animals. Antibiotics feeding may be a good way to study the function of microbes in insects due to efficiency and a linkage with pest control. Here, by using 16S rDNA sequencing, we show antibiotics feeding significantly altered the composition and diversity of microbes in different stages of <i>Spodoptera frugiperda</i> and showed dose dependent effects. Antibiotics ingestion resulted in a dramatic reduction of <i>Enterococcus</i> in larvae and <i>Klebsiella</i> in adults, but increase of <i>Weissella</i> in larvae and <i>Pseudomonas</i> in pupae and adults. <i>Enterococcus</i> spp in the lepidopteran gut may play a protective role against insect pathogens and <i>Klebsiella</i> spp may have positive effects on insect fecundity. Some strains from <i>Pseudomonas</i> and <i>Weissella</i> are pathogens or opportunistic pathogens. Further biological assay showed that antibiotics treatment significantly affected the fitness of treated insects and their untreated offspring, with treated insects and their offspring having longer developmental period but lower body weight, survival rate, flight capacity and fecundity than those of controls. Lepidopterans may rely on gut microbiome for some digestions and previous study indicated that antibiotics-induced dysbiosis of gut microbes affects many biological processes of <i>S. frugiperda</i>. Therefore, it is possible that antibiotics disrupted the homeostasis of gut microbes and the host, which then negatively affected the survival and reproduction of <i>S. frugiperda</i>. These findings contribute to a better understanding of the role of the microbiota in insects and will aid in the development of environmentally friendly management techniques for this pest.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01759-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01759-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠道微生物群与宿主之间的动态平衡对动物至关重要。饲喂抗生素可能是研究昆虫体内微生物功能的一个好方法,因为它效率高,而且与害虫控制有关。在此,我们利用 16S rDNA 测序表明,饲喂抗生素会显著改变鞘翅目蛙不同阶段的微生物组成和多样性,并表现出剂量依赖效应。摄入抗生素导致幼虫体内的肠球菌和成虫体内的克雷伯氏菌急剧减少,但幼虫体内的魏氏菌和蛹及成虫体内的假单胞菌却有所增加。鳞翅目昆虫肠道中的肠球菌属可能对昆虫的病原体起到保护作用,而克雷伯氏菌属可能对昆虫的繁殖力有积极影响。假单胞菌和魏氏菌中的一些菌株是病原体或机会性病原体。进一步的生物检测表明,抗生素处理对处理过的昆虫及其未处理的后代的体能有显著影响,处理过的昆虫及其后代的发育期比对照组长,但体重、存活率、飞行能力和繁殖力比对照组低。鳞翅目昆虫的一些消化过程可能依赖肠道微生物群,先前的研究表明,抗生素引起的肠道微生物菌群失调会影响鞘翅目昆虫的许多生物学过程。因此,抗生素有可能破坏了肠道微生物和宿主的平衡,进而对食蚜蝇的生存和繁殖产生负面影响。这些发现有助于更好地了解微生物群在昆虫中的作用,并有助于开发针对这种害虫的环境友好型管理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antibiotics ingestion altered the composition of gut microbes and affected the development and reproduction of the fall armyworm

Antibiotics ingestion altered the composition of gut microbes and affected the development and reproduction of the fall armyworm

A dynamic homeostasis between gut microbiome and the host is essential for animals. Antibiotics feeding may be a good way to study the function of microbes in insects due to efficiency and a linkage with pest control. Here, by using 16S rDNA sequencing, we show antibiotics feeding significantly altered the composition and diversity of microbes in different stages of Spodoptera frugiperda and showed dose dependent effects. Antibiotics ingestion resulted in a dramatic reduction of Enterococcus in larvae and Klebsiella in adults, but increase of Weissella in larvae and Pseudomonas in pupae and adults. Enterococcus spp in the lepidopteran gut may play a protective role against insect pathogens and Klebsiella spp may have positive effects on insect fecundity. Some strains from Pseudomonas and Weissella are pathogens or opportunistic pathogens. Further biological assay showed that antibiotics treatment significantly affected the fitness of treated insects and their untreated offspring, with treated insects and their offspring having longer developmental period but lower body weight, survival rate, flight capacity and fecundity than those of controls. Lepidopterans may rely on gut microbiome for some digestions and previous study indicated that antibiotics-induced dysbiosis of gut microbes affects many biological processes of S. frugiperda. Therefore, it is possible that antibiotics disrupted the homeostasis of gut microbes and the host, which then negatively affected the survival and reproduction of S. frugiperda. These findings contribute to a better understanding of the role of the microbiota in insects and will aid in the development of environmentally friendly management techniques for this pest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信