通过近交替符号矩阵构建广义赫夫特阵列

IF 0.9 2区 数学 Q2 MATHEMATICS
L. Mella , T. Traetta
{"title":"通过近交替符号矩阵构建广义赫夫特阵列","authors":"L. Mella ,&nbsp;T. Traetta","doi":"10.1016/j.jcta.2024.105873","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>S</em> be a subset of a group <em>G</em> (not necessarily abelian) such that <span><math><mi>S</mi><mspace></mspace><mo>∩</mo><mo>−</mo><mi>S</mi></math></span> is empty or contains only elements of order 2, and let <span><math><mi>h</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> and <span><math><mi>k</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A <em>generalized Heffter array</em> GHA<span><math><msubsup><mrow></mrow><mrow><mi>S</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> over <em>G</em> is an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> matrix <span><math><mi>A</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></math></span> such that: the <em>i</em>-th row (resp. <em>j</em>-th column) of <em>A</em> contains exactly <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>) nonzero elements, and the list <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>,</mo><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>}</mo></math></span> equals <em>λ</em> times the set <span><math><mi>S</mi><mspace></mspace><mo>∪</mo><mspace></mspace><mo>−</mo><mi>S</mi></math></span>. We speak of a zero sum (resp. nonzero sum) GHA if each row and each column of <em>A</em> sums to zero (resp. a nonzero element), with respect to some ordering.</p><p>In this paper, we use <em>near alternating sign matrices</em> to build both zero and nonzero sum GHAs, over cyclic groups, having the further strong property of being simple. In particular, we construct zero sum and simple GHAs whose row and column weights are congruent to 0 modulo 4. This result also provides the first infinite family of simple (classic) Heffter arrays to be rectangular (<span><math><mi>m</mi><mo>≠</mo><mi>n</mi></math></span>) and with less than <em>n</em> nonzero entries in each row. Furthermore, we build nonzero sum GHA<span><math><msubsup><mrow></mrow><mrow><mi>S</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> over an arbitrary group <em>G</em> whenever <em>S</em> contains enough noninvolutions, thus extending previous nonconstructive results where <span><math><mo>±</mo><mi>S</mi><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span> for some subgroup <em>H</em> of <em>G</em>.</p><p>Finally, we describe how GHAs can be used to build orthogonal decompositions and biembeddings of Cayley graphs (over groups not necessarily abelian) onto orientable surfaces.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105873"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing generalized Heffter arrays via near alternating sign matrices\",\"authors\":\"L. Mella ,&nbsp;T. Traetta\",\"doi\":\"10.1016/j.jcta.2024.105873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>S</em> be a subset of a group <em>G</em> (not necessarily abelian) such that <span><math><mi>S</mi><mspace></mspace><mo>∩</mo><mo>−</mo><mi>S</mi></math></span> is empty or contains only elements of order 2, and let <span><math><mi>h</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> and <span><math><mi>k</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A <em>generalized Heffter array</em> GHA<span><math><msubsup><mrow></mrow><mrow><mi>S</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> over <em>G</em> is an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> matrix <span><math><mi>A</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></math></span> such that: the <em>i</em>-th row (resp. <em>j</em>-th column) of <em>A</em> contains exactly <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>) nonzero elements, and the list <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>,</mo><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>}</mo></math></span> equals <em>λ</em> times the set <span><math><mi>S</mi><mspace></mspace><mo>∪</mo><mspace></mspace><mo>−</mo><mi>S</mi></math></span>. We speak of a zero sum (resp. nonzero sum) GHA if each row and each column of <em>A</em> sums to zero (resp. a nonzero element), with respect to some ordering.</p><p>In this paper, we use <em>near alternating sign matrices</em> to build both zero and nonzero sum GHAs, over cyclic groups, having the further strong property of being simple. In particular, we construct zero sum and simple GHAs whose row and column weights are congruent to 0 modulo 4. This result also provides the first infinite family of simple (classic) Heffter arrays to be rectangular (<span><math><mi>m</mi><mo>≠</mo><mi>n</mi></math></span>) and with less than <em>n</em> nonzero entries in each row. Furthermore, we build nonzero sum GHA<span><math><msubsup><mrow></mrow><mrow><mi>S</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> over an arbitrary group <em>G</em> whenever <em>S</em> contains enough noninvolutions, thus extending previous nonconstructive results where <span><math><mo>±</mo><mi>S</mi><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span> for some subgroup <em>H</em> of <em>G</em>.</p><p>Finally, we describe how GHAs can be used to build orthogonal decompositions and biembeddings of Cayley graphs (over groups not necessarily abelian) onto orientable surfaces.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"205 \",\"pages\":\"Article 105873\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000128\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000128","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 S 是一个群 G 的子集(不一定是非良性的),使得 S∩-S 是空的或只包含阶数为 2 的元素,并且设 h=(h1,...,hm)∈Nm,k=(k1,...,kn )∈Nn。G 上的广义赫夫特数组 GHASλ(m,n;h,k) 是一个 m×n 矩阵 A=(aij),使得:A 的第 i 行(或第 j 列)恰好包含 hi(或 kj)个非零元素,且列表 {aij,-aij|aij≠0} 等于集合 S∪-S 的 λ 倍。在本文中,我们使用近交替符号矩阵来构建循环群上的零和(或非零和)GHA,它还具有简单的强性质。特别是,我们构建的零和简单 GHA,其行权重和列权重同余为 0 modulo 4。这一结果还提供了第一个矩形(m≠n)且每行非零条目少于 n 个的简单(经典)赫夫特数组无穷族。此外,只要 S 包含足够多的非卷积,我们就能在任意群 G 上建立非零和 GHASλ(m,n;h,k),从而扩展了之前的非构造性结果,即对于 G 的某个子群 H,±S=G∖H。最后,我们描述了如何利用 GHA 来建立 Cayley 图(在不一定是无性的群上)到可定向曲面上的正交分解和双嵌套。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing generalized Heffter arrays via near alternating sign matrices

Let S be a subset of a group G (not necessarily abelian) such that SS is empty or contains only elements of order 2, and let h=(h1,,hm)Nm and k=(k1,,kn)Nn. A generalized Heffter array GHASλ(m,n;h,k) over G is an m×n matrix A=(aij) such that: the i-th row (resp. j-th column) of A contains exactly hi (resp. kj) nonzero elements, and the list {aij,aij|aij0} equals λ times the set SS. We speak of a zero sum (resp. nonzero sum) GHA if each row and each column of A sums to zero (resp. a nonzero element), with respect to some ordering.

In this paper, we use near alternating sign matrices to build both zero and nonzero sum GHAs, over cyclic groups, having the further strong property of being simple. In particular, we construct zero sum and simple GHAs whose row and column weights are congruent to 0 modulo 4. This result also provides the first infinite family of simple (classic) Heffter arrays to be rectangular (mn) and with less than n nonzero entries in each row. Furthermore, we build nonzero sum GHASλ(m,n;h,k) over an arbitrary group G whenever S contains enough noninvolutions, thus extending previous nonconstructive results where ±S=GH for some subgroup H of G.

Finally, we describe how GHAs can be used to build orthogonal decompositions and biembeddings of Cayley graphs (over groups not necessarily abelian) onto orientable surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信