Yingju Wu, Yang Zhang, Xiaoyu Wang, Wentao Hu, Song Zhao, Timothy Officer, Kun Luo, Ke Tong, Congcong Du, Liqiang Zhang, Baozhong Li, Zewen Zhuge, Zitai Liang, Mengdong Ma, Anmin Nie, Dongli Yu, Julong He, Zhongyuan Liu, Bo Xu, Yanbin Wang, Zhisheng Zhao, Yongjun Tian
{"title":"具有高变形能力和强度的双层氮化硼陶瓷","authors":"Yingju Wu, Yang Zhang, Xiaoyu Wang, Wentao Hu, Song Zhao, Timothy Officer, Kun Luo, Ke Tong, Congcong Du, Liqiang Zhang, Baozhong Li, Zewen Zhuge, Zitai Liang, Mengdong Ma, Anmin Nie, Dongli Yu, Julong He, Zhongyuan Liu, Bo Xu, Yanbin Wang, Zhisheng Zhao, Yongjun Tian","doi":"10.1038/s41586-024-07036-5","DOIUrl":null,"url":null,"abstract":"Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1–5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics. A bulk ceramic composed of interlocked boron nitride nanoplates with a laminated structure of twist-stacked nanoslices is created using hot-pressing and spark plasma sintering, which exhibits large elastic and plastic deformability and high strength at room temperature.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"626 8000","pages":"779-784"},"PeriodicalIF":50.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-07036-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Twisted-layer boron nitride ceramic with high deformability and strength\",\"authors\":\"Yingju Wu, Yang Zhang, Xiaoyu Wang, Wentao Hu, Song Zhao, Timothy Officer, Kun Luo, Ke Tong, Congcong Du, Liqiang Zhang, Baozhong Li, Zewen Zhuge, Zitai Liang, Mengdong Ma, Anmin Nie, Dongli Yu, Julong He, Zhongyuan Liu, Bo Xu, Yanbin Wang, Zhisheng Zhao, Yongjun Tian\",\"doi\":\"10.1038/s41586-024-07036-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1–5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics. A bulk ceramic composed of interlocked boron nitride nanoplates with a laminated structure of twist-stacked nanoslices is created using hot-pressing and spark plasma sintering, which exhibits large elastic and plastic deformability and high strength at room temperature.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"626 8000\",\"pages\":\"779-784\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-024-07036-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-07036-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07036-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Twisted-layer boron nitride ceramic with high deformability and strength
Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1–5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics. A bulk ceramic composed of interlocked boron nitride nanoplates with a laminated structure of twist-stacked nanoslices is created using hot-pressing and spark plasma sintering, which exhibits large elastic and plastic deformability and high strength at room temperature.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.