利用钻石中的电子自旋进行宽场傅立叶磁成像

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Zhongzhi Guo, You Huang, Mingcheng Cai, Chunxing Li, Mengze Shen, Mengqi Wang, Pei Yu, Ya Wang, Fazhan Shi, Pengfei Wang, Jiangfeng Du
{"title":"利用钻石中的电子自旋进行宽场傅立叶磁成像","authors":"Zhongzhi Guo, You Huang, Mingcheng Cai, Chunxing Li, Mengze Shen, Mengqi Wang, Pei Yu, Ya Wang, Fazhan Shi, Pengfei Wang, Jiangfeng Du","doi":"10.1038/s41534-024-00818-9","DOIUrl":null,"url":null,"abstract":"<p>Wide-field magnetic imaging based on nitrogen-vacancy (NV) centers in diamond has been shown the applicability in material and biological science. However, the spatial resolution is limited by the optical diffraction limit (&gt;200 nm) due to the optical real-space localization and readout of NV centers. Here, we report the wide-field Fourier magnetic imaging technique to improve spatial resolution beyond the optical diffraction limit while maintaining the large field of view. Our method relies on wide-field pulsed magnetic field gradient encoding of NV spins and Fourier transform under pixel-dependent spatial filters. We have improved spatial resolution by a factor of 20 compared to the optical resolution and demonstrated the wide-field super-resolution magnetic imaging of a gradient magnetic field. This technique paves a way for efficient magnetic imaging of large-scale fine structures at the nanoscale.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"65 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-field Fourier magnetic imaging with electron spins in diamond\",\"authors\":\"Zhongzhi Guo, You Huang, Mingcheng Cai, Chunxing Li, Mengze Shen, Mengqi Wang, Pei Yu, Ya Wang, Fazhan Shi, Pengfei Wang, Jiangfeng Du\",\"doi\":\"10.1038/s41534-024-00818-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wide-field magnetic imaging based on nitrogen-vacancy (NV) centers in diamond has been shown the applicability in material and biological science. However, the spatial resolution is limited by the optical diffraction limit (&gt;200 nm) due to the optical real-space localization and readout of NV centers. Here, we report the wide-field Fourier magnetic imaging technique to improve spatial resolution beyond the optical diffraction limit while maintaining the large field of view. Our method relies on wide-field pulsed magnetic field gradient encoding of NV spins and Fourier transform under pixel-dependent spatial filters. We have improved spatial resolution by a factor of 20 compared to the optical resolution and demonstrated the wide-field super-resolution magnetic imaging of a gradient magnetic field. This technique paves a way for efficient magnetic imaging of large-scale fine structures at the nanoscale.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00818-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00818-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于金刚石中的氮空位(NV)中心的宽场磁成像已被证明适用于材料和生物科学。然而,由于 NV 中心的光学实空间定位和读出,其空间分辨率受到光学衍射极限(>200 nm)的限制。在此,我们报告了宽场傅立叶磁成像技术,以提高空间分辨率,超越光学衍射极限,同时保持大视野。我们的方法依赖于 NV 自旋的宽场脉冲磁场梯度编码和像素空间滤波器下的傅里叶变换。与光学分辨率相比,我们将空间分辨率提高了 20 倍,并演示了梯度磁场的宽场超分辨率磁成像。这项技术为纳米级大规模精细结构的高效磁成像铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wide-field Fourier magnetic imaging with electron spins in diamond

Wide-field Fourier magnetic imaging with electron spins in diamond

Wide-field magnetic imaging based on nitrogen-vacancy (NV) centers in diamond has been shown the applicability in material and biological science. However, the spatial resolution is limited by the optical diffraction limit (>200 nm) due to the optical real-space localization and readout of NV centers. Here, we report the wide-field Fourier magnetic imaging technique to improve spatial resolution beyond the optical diffraction limit while maintaining the large field of view. Our method relies on wide-field pulsed magnetic field gradient encoding of NV spins and Fourier transform under pixel-dependent spatial filters. We have improved spatial resolution by a factor of 20 compared to the optical resolution and demonstrated the wide-field super-resolution magnetic imaging of a gradient magnetic field. This technique paves a way for efficient magnetic imaging of large-scale fine structures at the nanoscale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信