通过机器学习为发现缓蚀剂奠定实验基础

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Can Özkan, Lisa Sahlmann, Christian Feiler, Mikhail Zheludkevich, Sviatlana Lamaka, Parth Sewlikar, Agnieszka Kooijman, Peyman Taheri, Arjan Mol
{"title":"通过机器学习为发现缓蚀剂奠定实验基础","authors":"Can Özkan, Lisa Sahlmann, Christian Feiler, Mikhail Zheludkevich, Sviatlana Lamaka, Parth Sewlikar, Agnieszka Kooijman, Peyman Taheri, Arjan Mol","doi":"10.1038/s41529-024-00435-z","DOIUrl":null,"url":null,"abstract":"Creating durable, eco-friendly coatings for long-term corrosion protection requires innovative strategies to streamline design and development processes, conserve resources, and decrease maintenance costs. In this pursuit, machine learning emerges as a promising catalyst, despite the challenges presented by the scarcity of high-quality datasets in the field of corrosion inhibition research. To address this obstacle, we have created an extensive electrochemical library of around 80 inhibitor candidates. The electrochemical behaviour of inhibitor-exposed AA2024-T3 substrates was captured using linear polarisation resistance, electrochemical impedance spectroscopy, and potentiodynamic polarisation techniques at different exposure times to obtain the most comprehensive electrochemical picture of the corrosion inhibition over a 24-h period. The experimental results yield target parameters and additional input features that can be combined with computational descriptors to develop quantitative structure–property relationship (QSPR) models augmented by mechanistic input features.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00435-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Laying the experimental foundation for corrosion inhibitor discovery through machine learning\",\"authors\":\"Can Özkan, Lisa Sahlmann, Christian Feiler, Mikhail Zheludkevich, Sviatlana Lamaka, Parth Sewlikar, Agnieszka Kooijman, Peyman Taheri, Arjan Mol\",\"doi\":\"10.1038/s41529-024-00435-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating durable, eco-friendly coatings for long-term corrosion protection requires innovative strategies to streamline design and development processes, conserve resources, and decrease maintenance costs. In this pursuit, machine learning emerges as a promising catalyst, despite the challenges presented by the scarcity of high-quality datasets in the field of corrosion inhibition research. To address this obstacle, we have created an extensive electrochemical library of around 80 inhibitor candidates. The electrochemical behaviour of inhibitor-exposed AA2024-T3 substrates was captured using linear polarisation resistance, electrochemical impedance spectroscopy, and potentiodynamic polarisation techniques at different exposure times to obtain the most comprehensive electrochemical picture of the corrosion inhibition over a 24-h period. The experimental results yield target parameters and additional input features that can be combined with computational descriptors to develop quantitative structure–property relationship (QSPR) models augmented by mechanistic input features.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00435-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00435-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00435-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要制造出长期防腐蚀的耐用环保型涂料,就必须采取创新战略,以简化设计和开发流程、节约资源并降低维护成本。在这一过程中,尽管缓蚀研究领域缺少高质量的数据集,但机器学习是一种前景广阔的催化剂。为了克服这一障碍,我们创建了一个包含约 80 种候选抑制剂的庞大电化学库。我们使用线性极化电阻、电化学阻抗光谱和电位极化技术捕捉了暴露于抑制剂的 AA2024-T3 基材在不同暴露时间下的电化学行为,从而获得了 24 小时内最全面的缓蚀电化学图谱。实验结果产生了目标参数和额外的输入特征,这些参数和特征可与计算描述符相结合,以建立由机理输入特征增强的定量结构-属性关系 (QSPR) 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laying the experimental foundation for corrosion inhibitor discovery through machine learning

Laying the experimental foundation for corrosion inhibitor discovery through machine learning
Creating durable, eco-friendly coatings for long-term corrosion protection requires innovative strategies to streamline design and development processes, conserve resources, and decrease maintenance costs. In this pursuit, machine learning emerges as a promising catalyst, despite the challenges presented by the scarcity of high-quality datasets in the field of corrosion inhibition research. To address this obstacle, we have created an extensive electrochemical library of around 80 inhibitor candidates. The electrochemical behaviour of inhibitor-exposed AA2024-T3 substrates was captured using linear polarisation resistance, electrochemical impedance spectroscopy, and potentiodynamic polarisation techniques at different exposure times to obtain the most comprehensive electrochemical picture of the corrosion inhibition over a 24-h period. The experimental results yield target parameters and additional input features that can be combined with computational descriptors to develop quantitative structure–property relationship (QSPR) models augmented by mechanistic input features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信