{"title":"揭示与小麦氮利用效率有关的不同性状和参数的相互作用,促进气候适应性农业的发展","authors":"Gayatri, Puja Mandal, Karnam Venkatesh, Pranab Kumar Mandal","doi":"10.1111/jac.12696","DOIUrl":null,"url":null,"abstract":"<p>Enhancing Nitrogen Use Efficiency (NUE) is extremely important towards mitigating climate change, especially in wheat where the NUE is less than 50%. Hence, optimizing grain yield under reduced application of nitrogenous fertilizer is a significant challenge. To address this challenge, a comprehensive study was conducted to investigate various agronomic traits and morphological, biochemical and molecular parameters related to NUE. This study explored their interrelationships and effects on grain yield, providing novel insights that were not previously reported. A set of 278 diverse wheat genotypes were assessed, encompassing eight NUE-related field traits. All traits' values were reduced under stressed N (ranging from 7.5% to 77.5%) except Nitrogen Utilization Efficiency (NUtE) and NUE. Data analysis showed a significant positive correlation between grain yield and all other NUE-related traits (<i>r</i><sup>2</sup> value ranged from .23 to 1.00), highlighting their relevance in comprehending the biological NUE of wheat plants. Principal component analysis (PCA) also revealed that N at head and N at harvest were more connected with gain yield, NUE and biomass under the optimum N condition, but less connected with gain yield and NUE under the stressed N condition. To complement the field data, representative genotypes were further subjected to a hydroponics experiment under absolute N control to study the different morphological parameters, photosynthetic pigments and the performance of essential N- and C-metabolizing enzymes at the seedling stage. N stress had a detrimental impact on the majority of the parameters (−0.84% to −79.8%). Nitrite reductase (NiR), glutamate dehydrogenase (GDH) and isocitrate dehydrogenase (ICDH) enzymes as well as root length (RL), root fresh weight (RFW) and <i>CS</i> transcript, were positively affected by 5.9%–35.6%. The correlation analysis highlighted the substantial influence of four key N-metabolizing enzymes, namely nitrate reductase (NR), glutamine synthetase (GS), glutamate oxo-glutarate aminotransferase (GOGAT), and GDH on grain yield. Additionally, this study highlighted the direct and indirect associations between seedling parameters and field traits, where shoot and root length were found to be most significant for N acquisition, especially under N stress. In conclusion, these findings offer valuable insights into the intricate network of traits and parameters influencing wheat grain yield under varying N regimes.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the interplay of different traits and parameters related to nitrogen use efficiency in wheat for climate-resilient agriculture\",\"authors\":\"Gayatri, Puja Mandal, Karnam Venkatesh, Pranab Kumar Mandal\",\"doi\":\"10.1111/jac.12696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing Nitrogen Use Efficiency (NUE) is extremely important towards mitigating climate change, especially in wheat where the NUE is less than 50%. Hence, optimizing grain yield under reduced application of nitrogenous fertilizer is a significant challenge. To address this challenge, a comprehensive study was conducted to investigate various agronomic traits and morphological, biochemical and molecular parameters related to NUE. This study explored their interrelationships and effects on grain yield, providing novel insights that were not previously reported. A set of 278 diverse wheat genotypes were assessed, encompassing eight NUE-related field traits. All traits' values were reduced under stressed N (ranging from 7.5% to 77.5%) except Nitrogen Utilization Efficiency (NUtE) and NUE. Data analysis showed a significant positive correlation between grain yield and all other NUE-related traits (<i>r</i><sup>2</sup> value ranged from .23 to 1.00), highlighting their relevance in comprehending the biological NUE of wheat plants. Principal component analysis (PCA) also revealed that N at head and N at harvest were more connected with gain yield, NUE and biomass under the optimum N condition, but less connected with gain yield and NUE under the stressed N condition. To complement the field data, representative genotypes were further subjected to a hydroponics experiment under absolute N control to study the different morphological parameters, photosynthetic pigments and the performance of essential N- and C-metabolizing enzymes at the seedling stage. N stress had a detrimental impact on the majority of the parameters (−0.84% to −79.8%). Nitrite reductase (NiR), glutamate dehydrogenase (GDH) and isocitrate dehydrogenase (ICDH) enzymes as well as root length (RL), root fresh weight (RFW) and <i>CS</i> transcript, were positively affected by 5.9%–35.6%. The correlation analysis highlighted the substantial influence of four key N-metabolizing enzymes, namely nitrate reductase (NR), glutamine synthetase (GS), glutamate oxo-glutarate aminotransferase (GOGAT), and GDH on grain yield. Additionally, this study highlighted the direct and indirect associations between seedling parameters and field traits, where shoot and root length were found to be most significant for N acquisition, especially under N stress. In conclusion, these findings offer valuable insights into the intricate network of traits and parameters influencing wheat grain yield under varying N regimes.</p>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":\"210 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.12696\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12696","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Unravelling the interplay of different traits and parameters related to nitrogen use efficiency in wheat for climate-resilient agriculture
Enhancing Nitrogen Use Efficiency (NUE) is extremely important towards mitigating climate change, especially in wheat where the NUE is less than 50%. Hence, optimizing grain yield under reduced application of nitrogenous fertilizer is a significant challenge. To address this challenge, a comprehensive study was conducted to investigate various agronomic traits and morphological, biochemical and molecular parameters related to NUE. This study explored their interrelationships and effects on grain yield, providing novel insights that were not previously reported. A set of 278 diverse wheat genotypes were assessed, encompassing eight NUE-related field traits. All traits' values were reduced under stressed N (ranging from 7.5% to 77.5%) except Nitrogen Utilization Efficiency (NUtE) and NUE. Data analysis showed a significant positive correlation between grain yield and all other NUE-related traits (r2 value ranged from .23 to 1.00), highlighting their relevance in comprehending the biological NUE of wheat plants. Principal component analysis (PCA) also revealed that N at head and N at harvest were more connected with gain yield, NUE and biomass under the optimum N condition, but less connected with gain yield and NUE under the stressed N condition. To complement the field data, representative genotypes were further subjected to a hydroponics experiment under absolute N control to study the different morphological parameters, photosynthetic pigments and the performance of essential N- and C-metabolizing enzymes at the seedling stage. N stress had a detrimental impact on the majority of the parameters (−0.84% to −79.8%). Nitrite reductase (NiR), glutamate dehydrogenase (GDH) and isocitrate dehydrogenase (ICDH) enzymes as well as root length (RL), root fresh weight (RFW) and CS transcript, were positively affected by 5.9%–35.6%. The correlation analysis highlighted the substantial influence of four key N-metabolizing enzymes, namely nitrate reductase (NR), glutamine synthetase (GS), glutamate oxo-glutarate aminotransferase (GOGAT), and GDH on grain yield. Additionally, this study highlighted the direct and indirect associations between seedling parameters and field traits, where shoot and root length were found to be most significant for N acquisition, especially under N stress. In conclusion, these findings offer valuable insights into the intricate network of traits and parameters influencing wheat grain yield under varying N regimes.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.