追踪δ13C和δ18O波动揭示古气候的稳定模式和关键模式

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Shifeng Sun , Haiying Wang , Yongjian Huang
{"title":"追踪δ13C和δ18O波动揭示古气候的稳定模式和关键模式","authors":"Shifeng Sun ,&nbsp;Haiying Wang ,&nbsp;Yongjian Huang","doi":"10.1016/j.gsf.2024.101805","DOIUrl":null,"url":null,"abstract":"<div><p>The examination of fluctuations in the correlations between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O is of significant importance for the reconstruction of the Earth’s climate history. A key challenge in paleoclimatology is finding a suitable method to represent the correlated fluctuation system between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O. The method must be able to handle data sets with missing or inaccurate values, while still retaining the full range of dynamic information about the system. The non-linear and complex correlations between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O poses a challenge in developing reliable and interpretable approaches. The transition network, which involves embedding the <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O sequence into the network using phase space reconstruction, is a coarse-grained based approach. This approach is well-suited to nonlinear, complex dynamic systems, and is particularly adept at emerging knowledge from low-quality datasets. We have effectively represented the fluctuations in the correlation between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O since <span><math><mrow><mn>66</mn></mrow></math></span> million years ago (Ma) using a system of complex network. This system, which has topological dynamical structures, is able to uncover the stable modes and key patterns in Cenozoic climate dynamics. Our findings could help to improve climate models and predictions of future climate change.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 4","pages":"Article 101805"},"PeriodicalIF":8.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167498712400029X/pdfft?md5=bbb8c8270115b0c9f79124f11208db10&pid=1-s2.0-S167498712400029X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate\",\"authors\":\"Shifeng Sun ,&nbsp;Haiying Wang ,&nbsp;Yongjian Huang\",\"doi\":\"10.1016/j.gsf.2024.101805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The examination of fluctuations in the correlations between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O is of significant importance for the reconstruction of the Earth’s climate history. A key challenge in paleoclimatology is finding a suitable method to represent the correlated fluctuation system between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O. The method must be able to handle data sets with missing or inaccurate values, while still retaining the full range of dynamic information about the system. The non-linear and complex correlations between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O poses a challenge in developing reliable and interpretable approaches. The transition network, which involves embedding the <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O sequence into the network using phase space reconstruction, is a coarse-grained based approach. This approach is well-suited to nonlinear, complex dynamic systems, and is particularly adept at emerging knowledge from low-quality datasets. We have effectively represented the fluctuations in the correlation between <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>C and <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span>O since <span><math><mrow><mn>66</mn></mrow></math></span> million years ago (Ma) using a system of complex network. This system, which has topological dynamical structures, is able to uncover the stable modes and key patterns in Cenozoic climate dynamics. Our findings could help to improve climate models and predictions of future climate change.</p></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"15 4\",\"pages\":\"Article 101805\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S167498712400029X/pdfft?md5=bbb8c8270115b0c9f79124f11208db10&pid=1-s2.0-S167498712400029X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S167498712400029X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167498712400029X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究 δ13C 和 δ18O 之间的相关波动对重建地球气候历史具有重要意义。古气候学的一个关键挑战是找到一种合适的方法来表示 δ13C 和 δ18O 之间的相关波动系统。这种方法必须能够处理缺失值或不准确值的数据集,同时仍能保留系统的全部动态信息。δ13C 和 δ18O 之间的非线性和复杂相关性对开发可靠和可解释的方法提出了挑战。过渡网络是一种基于粗粒度的方法,它涉及利用相空间重构将 δ13C 和 δ18O 序列嵌入网络。这种方法非常适合非线性、复杂的动态系统,尤其擅长从低质量数据集中汲取知识。我们利用一个复杂的网络系统有效地表示了自 6600 万年前(Ma)以来 δ13C 和 δ18O 之间相关性的波动。该系统具有拓扑动力学结构,能够揭示新生代气候动力学的稳定模式和关键模式。我们的发现有助于改进气候模式和对未来气候变化的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate

Tracking δ13C and δ18O fluctuations uncovers stable modes and key patterns of paleoclimate

The examination of fluctuations in the correlations between δ13C and δ18O is of significant importance for the reconstruction of the Earth’s climate history. A key challenge in paleoclimatology is finding a suitable method to represent the correlated fluctuation system between δ13C and δ18O. The method must be able to handle data sets with missing or inaccurate values, while still retaining the full range of dynamic information about the system. The non-linear and complex correlations between δ13C and δ18O poses a challenge in developing reliable and interpretable approaches. The transition network, which involves embedding the δ13C and δ18O sequence into the network using phase space reconstruction, is a coarse-grained based approach. This approach is well-suited to nonlinear, complex dynamic systems, and is particularly adept at emerging knowledge from low-quality datasets. We have effectively represented the fluctuations in the correlation between δ13C and δ18O since 66 million years ago (Ma) using a system of complex network. This system, which has topological dynamical structures, is able to uncover the stable modes and key patterns in Cenozoic climate dynamics. Our findings could help to improve climate models and predictions of future climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信