钴浓度敏感的 Btu-like 系统促进了 Anabaena sp.

IF 4.1 3区 生物学 Q2 CELL BIOLOGY
Microbial Cell Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI:10.15698/mic2024.02.814
Julia Graf, Leonard Fresenborg, Hans-Michael Seitz, Rafael Pernil, Enrico Schleiff
{"title":"钴浓度敏感的 Btu-like 系统促进了 Anabaena sp.","authors":"Julia Graf, Leonard Fresenborg, Hans-Michael Seitz, Rafael Pernil, Enrico Schleiff","doi":"10.15698/mic2024.02.814","DOIUrl":null,"url":null,"abstract":"<p><p>Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for <i>Anabaena</i> sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. <i>Anabaena</i> contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of <i>tonB3 and btuD</i> show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"41-56"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878165/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in <i>Anabaena</i> sp. PCC 7120.\",\"authors\":\"Julia Graf, Leonard Fresenborg, Hans-Michael Seitz, Rafael Pernil, Enrico Schleiff\",\"doi\":\"10.15698/mic2024.02.814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for <i>Anabaena</i> sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. <i>Anabaena</i> contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of <i>tonB3 and btuD</i> show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":\"11 \",\"pages\":\"41-56\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2024.02.814\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2024.02.814","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金属平衡是所有生命形式的核心,因为金属是人体必需的微量营养素,含量过高会产生毒性作用。大分子机器有助于金属被吸收到细胞中,而细胞内的金属含量则通过多种方式进行调节,其中可能涉及核糖核酸(RNA)元素和蛋白质成分。虽然蛋白细菌吸收钴等金属并调节其细胞含量的一般原理和成分已经确定,但蓝藻等其他革兰氏阴性细菌的相应机制仍有待确定。与其他细菌相比,蓝藻因其光合作用活性而对金属有特殊需求。在此,我们将介绍钴和钴胺素对蓝藻的调节作用以及蓝藻对钴和钴胺素的吸收。Anabaena 的基因组中至少含有三个钴胺素核糖开关,其中一个的功能在本文中得到了证实。此外,还发现了两个外膜定位的钴胺素 TonB 依赖性转运体,即 BtuB1 和 BtuB2。BtuB2 在外部钴含量低的条件下对钴胺素的快速吸收非常重要,而 BtuB1 似乎在钴供应充足的条件下对钴胺素的吸收起作用。虽然总体功能相似,但这两个基因的具体功能不同,其突变体表现出不同的表型。钴胺素的摄取进一步依赖于 TonB 和 BtuFCD 机制,因为 tonB3 和 btuD 的突变体显示出较低的钴胺素摄取率。因此,我们的研究结果为蓝藻中钴胺素的吸收和细胞钴含量的调节提供了新的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in Anabaena sp. PCC 7120.

Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for Anabaena sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. Anabaena contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of tonB3 and btuD show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信