Shuai Qiao, Chujiang Cai*, Chong Pan, Yanpeng Liu and Qingfu Zhang,
{"title":"研究具有耦合润湿性差异和凸条纹阵列的表面的性能,以提高空气层的稳定性。","authors":"Shuai Qiao, Chujiang Cai*, Chong Pan, Yanpeng Liu and Qingfu Zhang, ","doi":"10.1021/acs.langmuir.3c03929","DOIUrl":null,"url":null,"abstract":"<p >The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of mathematical discretization and the contact angle hysteresis generated by the wettability difference, a surface coupled with a wettability difference treatment and a convex-stripe array is developed by laser engraving and fluorine modification, and its performance in improving the air layer stability is experimentally studied in a von Kármán swirling flow field. The results show that the destabilization of the air layer is mainly caused by the Kelvin–Helmholtz instability, which is triggered by the density difference between gas and liquid, as well as the tangential velocity difference between gas and liquid. When the air layer is relatively thin, tangential wave destabilization occurs, whereas for larger thicknesses, the destabilization mode is coupled wave destabilization. The maximum Reynolds number that keeps the air layer fully covering the surface of the rotating disk (with drag reduction performance) during the disk rotation process is defined as the critical Reynolds number (<i>Re</i><sub>c</sub>), which is 1.62 × 10<sup>5</sup> for the uniform superhydrophobic surface and 3.24 × 10<sup>5</sup> for the superhydrophobic surface with a convex stripe on the outermost ring (SCSS<sub>P</sub>). Individual treatments of wettability difference and a convex-stripe array on the SCSS<sub>P</sub> further improve the air layer stability, but <i>Re</i><sub>c</sub> remains at 3.24 × 10<sup>5</sup>. Finally, the coupling of the wettability difference treatment with a convex-stripe array significantly improves the air layer stability, resulting in an increase of <i>Re</i><sub>c</sub> to 4.05 × 10<sup>5</sup>, and the drag reduction rate stably maintained around 30%.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 9","pages":"4940–4952"},"PeriodicalIF":3.9000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability\",\"authors\":\"Shuai Qiao, Chujiang Cai*, Chong Pan, Yanpeng Liu and Qingfu Zhang, \",\"doi\":\"10.1021/acs.langmuir.3c03929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of mathematical discretization and the contact angle hysteresis generated by the wettability difference, a surface coupled with a wettability difference treatment and a convex-stripe array is developed by laser engraving and fluorine modification, and its performance in improving the air layer stability is experimentally studied in a von Kármán swirling flow field. The results show that the destabilization of the air layer is mainly caused by the Kelvin–Helmholtz instability, which is triggered by the density difference between gas and liquid, as well as the tangential velocity difference between gas and liquid. When the air layer is relatively thin, tangential wave destabilization occurs, whereas for larger thicknesses, the destabilization mode is coupled wave destabilization. The maximum Reynolds number that keeps the air layer fully covering the surface of the rotating disk (with drag reduction performance) during the disk rotation process is defined as the critical Reynolds number (<i>Re</i><sub>c</sub>), which is 1.62 × 10<sup>5</sup> for the uniform superhydrophobic surface and 3.24 × 10<sup>5</sup> for the superhydrophobic surface with a convex stripe on the outermost ring (SCSS<sub>P</sub>). Individual treatments of wettability difference and a convex-stripe array on the SCSS<sub>P</sub> further improve the air layer stability, but <i>Re</i><sub>c</sub> remains at 3.24 × 10<sup>5</sup>. Finally, the coupling of the wettability difference treatment with a convex-stripe array significantly improves the air layer stability, resulting in an increase of <i>Re</i><sub>c</sub> to 4.05 × 10<sup>5</sup>, and the drag reduction rate stably maintained around 30%.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 9\",\"pages\":\"4940–4952\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03929\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.3c03929","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability
The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of mathematical discretization and the contact angle hysteresis generated by the wettability difference, a surface coupled with a wettability difference treatment and a convex-stripe array is developed by laser engraving and fluorine modification, and its performance in improving the air layer stability is experimentally studied in a von Kármán swirling flow field. The results show that the destabilization of the air layer is mainly caused by the Kelvin–Helmholtz instability, which is triggered by the density difference between gas and liquid, as well as the tangential velocity difference between gas and liquid. When the air layer is relatively thin, tangential wave destabilization occurs, whereas for larger thicknesses, the destabilization mode is coupled wave destabilization. The maximum Reynolds number that keeps the air layer fully covering the surface of the rotating disk (with drag reduction performance) during the disk rotation process is defined as the critical Reynolds number (Rec), which is 1.62 × 105 for the uniform superhydrophobic surface and 3.24 × 105 for the superhydrophobic surface with a convex stripe on the outermost ring (SCSSP). Individual treatments of wettability difference and a convex-stripe array on the SCSSP further improve the air layer stability, but Rec remains at 3.24 × 105. Finally, the coupling of the wettability difference treatment with a convex-stripe array significantly improves the air layer stability, resulting in an increase of Rec to 4.05 × 105, and the drag reduction rate stably maintained around 30%.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).