Nghia Le Ba Thai, Henry T Beaman, Megan Perlman, Ernest E Obeng, Changling Du, Mary Beth B Monroe
{"title":"用于组织工程支架的壳聚糖聚乙烯醇甲基丙烯酸酯水凝胶。","authors":"Nghia Le Ba Thai, Henry T Beaman, Megan Perlman, Ernest E Obeng, Changling Du, Mary Beth B Monroe","doi":"10.1021/acsabm.3c01209","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in tissue engineering scaffolds is controlling scaffold degradation rates during healing while maintaining mechanical properties to support tissue formation. Hydrogels are three-dimensional matrices that are widely applied as tissue scaffolds based on their unique properties that can mimic the extracellular matrix. In this study, we develop a hybrid natural/synthetic hydrogel platform to tune the properties for tissue engineering scaffold applications. We modified chitosan and poly(vinyl alcohol) (PVA) with photo-cross-linkable methacrylate functional groups and then synthesized a library of chitosan PVA methacrylate hydrogels (ChiPVAMA) with two different photoinitiators, Irgacure 2959 (I2959) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). ChiPVAMA hydrogels showed tunability in degradation rates and mechanical properties based on both the polymer content and photoinitiator type. This tunability could enable their application in a range of tissue scaffold applications. In a 2D scratch wound healing assay, all hydrogel samples induced faster wound closure compared to a gauze clinical wound dressing control. NIH/3T3 cells encapsulated in hydrogels showed a high viability (∼92%) over 14 days, demonstrating the capacity of this system as a supportive cell scaffold. In addition, hydrogels containing a higher chitosan content demonstrated a high antibacterial capacity. Overall, ChiPVAMA hydrogels provide a potential tissue engineering scaffold that is tunable, degradable, and suitable for cell growth.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"7818-7827"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan Poly(vinyl alcohol) Methacrylate Hydrogels for Tissue Engineering Scaffolds.\",\"authors\":\"Nghia Le Ba Thai, Henry T Beaman, Megan Perlman, Ernest E Obeng, Changling Du, Mary Beth B Monroe\",\"doi\":\"10.1021/acsabm.3c01209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A major challenge in tissue engineering scaffolds is controlling scaffold degradation rates during healing while maintaining mechanical properties to support tissue formation. Hydrogels are three-dimensional matrices that are widely applied as tissue scaffolds based on their unique properties that can mimic the extracellular matrix. In this study, we develop a hybrid natural/synthetic hydrogel platform to tune the properties for tissue engineering scaffold applications. We modified chitosan and poly(vinyl alcohol) (PVA) with photo-cross-linkable methacrylate functional groups and then synthesized a library of chitosan PVA methacrylate hydrogels (ChiPVAMA) with two different photoinitiators, Irgacure 2959 (I2959) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). ChiPVAMA hydrogels showed tunability in degradation rates and mechanical properties based on both the polymer content and photoinitiator type. This tunability could enable their application in a range of tissue scaffold applications. In a 2D scratch wound healing assay, all hydrogel samples induced faster wound closure compared to a gauze clinical wound dressing control. NIH/3T3 cells encapsulated in hydrogels showed a high viability (∼92%) over 14 days, demonstrating the capacity of this system as a supportive cell scaffold. In addition, hydrogels containing a higher chitosan content demonstrated a high antibacterial capacity. Overall, ChiPVAMA hydrogels provide a potential tissue engineering scaffold that is tunable, degradable, and suitable for cell growth.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"7818-7827\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.3c01209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.3c01209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Chitosan Poly(vinyl alcohol) Methacrylate Hydrogels for Tissue Engineering Scaffolds.
A major challenge in tissue engineering scaffolds is controlling scaffold degradation rates during healing while maintaining mechanical properties to support tissue formation. Hydrogels are three-dimensional matrices that are widely applied as tissue scaffolds based on their unique properties that can mimic the extracellular matrix. In this study, we develop a hybrid natural/synthetic hydrogel platform to tune the properties for tissue engineering scaffold applications. We modified chitosan and poly(vinyl alcohol) (PVA) with photo-cross-linkable methacrylate functional groups and then synthesized a library of chitosan PVA methacrylate hydrogels (ChiPVAMA) with two different photoinitiators, Irgacure 2959 (I2959) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). ChiPVAMA hydrogels showed tunability in degradation rates and mechanical properties based on both the polymer content and photoinitiator type. This tunability could enable their application in a range of tissue scaffold applications. In a 2D scratch wound healing assay, all hydrogel samples induced faster wound closure compared to a gauze clinical wound dressing control. NIH/3T3 cells encapsulated in hydrogels showed a high viability (∼92%) over 14 days, demonstrating the capacity of this system as a supportive cell scaffold. In addition, hydrogels containing a higher chitosan content demonstrated a high antibacterial capacity. Overall, ChiPVAMA hydrogels provide a potential tissue engineering scaffold that is tunable, degradable, and suitable for cell growth.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.