一般兰迪奇型图不变式之间的一些不等式

IF 1.3 4区 数学 Q1 MATHEMATICS
Imran Nadeem, Saba Siddique, Yilun Shang
{"title":"一般兰迪奇型图不变式之间的一些不等式","authors":"Imran Nadeem, Saba Siddique, Yilun Shang","doi":"10.1155/2024/8204742","DOIUrl":null,"url":null,"abstract":"The Randić-type graph invariants are extensively investigated vertex-degree-based topological indices and have gained much prominence in recent years. The general Randić and zeroth-order general Randić indices are Randić-type graph invariants and are defined for a graph <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> with vertex set <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.35121 8.8423\" width=\"9.35121pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> as <span><svg height=\"17.1973pt\" style=\"vertical-align:-7.24091pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.95639 43.051 17.1973\" width=\"43.051pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,13.9,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,18.398,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.29,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,35.42,0)\"></path></g></svg><span></span><svg height=\"17.1973pt\" style=\"vertical-align:-7.24091pt\" version=\"1.1\" viewbox=\"46.6331838 -9.95639 67.033 17.1973\" width=\"67.033pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,46.683,.007)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,56.47,3.466)\"></path></g><g transform=\"matrix(.0065,0,0,-0.0065,60.728,5.567)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,63.099,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,68.659,3.466)\"><use xlink:href=\"#g50-242\"></use></g><g transform=\"matrix(.0065,0,0,-0.0065,72.918,5.567)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,76.812,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,81.31,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,88.46,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,91.515,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,98.665,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,103.091,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,107.589,-5.741)\"><use xlink:href=\"#g50-223\"></use></g></svg></span> and <span><svg height=\"15.6315pt\" style=\"vertical-align:-5.67511pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.95639 44.286 15.6315\" width=\"44.286pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.321,3.132)\"><use xlink:href=\"#g50-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.135,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.633,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.525,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,36.655,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"15.6315pt\" style=\"vertical-align:-5.67511pt\" version=\"1.1\" viewbox=\"47.8681838 -9.95639 41.872 15.6315\" width=\"41.872pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.918,.007)\"><use xlink:href=\"#g119-65\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,57.705,3.466)\"></path></g><g transform=\"matrix(.0065,0,0,-0.0065,61.772,5.567)\"><use xlink:href=\"#g176-106\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,64.143,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,69.412,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,76.503,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,83.718,-5.741)\"><use xlink:href=\"#g50-223\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,83.653,3.784)\"><use xlink:href=\"#g50-106\"></use></g></svg>,</span></span> respectively, where <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.51131 6.1673\" width=\"7.51131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is an arbitrary real number, <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 10.3321 12.5794\" width=\"10.3321pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.15,3.132)\"><use xlink:href=\"#g50-106\"></use></g></svg> denotes the degree of a vertex <span><svg height=\"9.25202pt\" style=\"vertical-align:-3.29111pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 9.09247 9.25202\" width=\"9.09247pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.915,3.132)\"><use xlink:href=\"#g50-106\"></use></g></svg>,</span> and <span><svg height=\"11.4899pt\" style=\"vertical-align:-5.52899pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 20.233 11.4899\" width=\"20.233pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-242\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.915,3.132)\"><use xlink:href=\"#g50-106\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.602,0)\"></path></g></svg><span></span><svg height=\"11.4899pt\" style=\"vertical-align:-5.52899pt\" version=\"1.1\" viewbox=\"23.8151838 -5.96091 10.514 11.4899\" width=\"10.514pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.865,0)\"><use xlink:href=\"#g113-242\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,29.78,3.132)\"><use xlink:href=\"#g50-107\"></use></g></svg></span> represents the adjacency of vertices <svg height=\"9.25202pt\" style=\"vertical-align:-3.29111pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 9.09247 9.25202\" width=\"9.09247pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-242\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.915,3.132)\"><use xlink:href=\"#g50-106\"></use></g></svg> and <svg height=\"11.4899pt\" style=\"vertical-align:-5.52899pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 10.4626 11.4899\" width=\"10.4626pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-242\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.915,3.132)\"><use xlink:href=\"#g50-107\"></use></g></svg> in <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g></svg>.</span> Establishing relationships between two topological indices holds significant importance for researchers. Some implicit inequality relationships between <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 14.0301 11.927\" width=\"14.0301pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-223\"></use></g></svg> and <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 15.2698 11.927\" width=\"15.2698pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-82\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.321,3.132)\"><use xlink:href=\"#g50-223\"></use></g></svg> have been derived so far. In this paper, we establish explicit inequality relationships between <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 14.0301 11.927\" width=\"14.0301pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-223\"></use></g></svg> and <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 15.2698 11.927\" width=\"15.2698pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-82\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.321,3.132)\"><use xlink:href=\"#g50-223\"></use></g></svg>.</span> Also, we determine linear inequality relationships between these graph invariants. Moreover, we obtain some new inequalities for various vertex-degree-based topological indices by the appropriate choice of <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.51131 6.1673\" width=\"7.51131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g></svg>.</span>","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Inequalities between General Randić-Type Graph Invariants\",\"authors\":\"Imran Nadeem, Saba Siddique, Yilun Shang\",\"doi\":\"10.1155/2024/8204742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Randić-type graph invariants are extensively investigated vertex-degree-based topological indices and have gained much prominence in recent years. The general Randić and zeroth-order general Randić indices are Randić-type graph invariants and are defined for a graph <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> with vertex set <svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.35121 8.8423\\\" width=\\\"9.35121pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> as <span><svg height=\\\"17.1973pt\\\" style=\\\"vertical-align:-7.24091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.95639 43.051 17.1973\\\" width=\\\"43.051pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,13.9,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,18.398,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,27.29,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,35.42,0)\\\"></path></g></svg><span></span><svg height=\\\"17.1973pt\\\" style=\\\"vertical-align:-7.24091pt\\\" version=\\\"1.1\\\" viewbox=\\\"46.6331838 -9.95639 67.033 17.1973\\\" width=\\\"67.033pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,46.683,.007)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,56.47,3.466)\\\"></path></g><g transform=\\\"matrix(.0065,0,0,-0.0065,60.728,5.567)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,63.099,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,68.659,3.466)\\\"><use xlink:href=\\\"#g50-242\\\"></use></g><g transform=\\\"matrix(.0065,0,0,-0.0065,72.918,5.567)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,76.812,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,81.31,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,88.46,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,91.515,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,98.665,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,103.091,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,107.589,-5.741)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g></svg></span> and <span><svg height=\\\"15.6315pt\\\" style=\\\"vertical-align:-5.67511pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.95639 44.286 15.6315\\\" width=\\\"44.286pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.321,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.135,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.633,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,28.525,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,36.655,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><span><svg height=\\\"15.6315pt\\\" style=\\\"vertical-align:-5.67511pt\\\" version=\\\"1.1\\\" viewbox=\\\"47.8681838 -9.95639 41.872 15.6315\\\" width=\\\"41.872pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,47.918,.007)\\\"><use xlink:href=\\\"#g119-65\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,57.705,3.466)\\\"></path></g><g transform=\\\"matrix(.0065,0,0,-0.0065,61.772,5.567)\\\"><use xlink:href=\\\"#g176-106\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,64.143,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,69.412,3.466)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,76.503,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,83.718,-5.741)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,83.653,3.784)\\\"><use xlink:href=\\\"#g50-106\\\"></use></g></svg>,</span></span> respectively, where <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.51131 6.1673\\\" width=\\\"7.51131pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> is an arbitrary real number, <svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 10.3321 12.5794\\\" width=\\\"10.3321pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-101\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.15,3.132)\\\"><use xlink:href=\\\"#g50-106\\\"></use></g></svg> denotes the degree of a vertex <span><svg height=\\\"9.25202pt\\\" style=\\\"vertical-align:-3.29111pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 9.09247 9.25202\\\" width=\\\"9.09247pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.915,3.132)\\\"><use xlink:href=\\\"#g50-106\\\"></use></g></svg>,</span> and <span><svg height=\\\"11.4899pt\\\" style=\\\"vertical-align:-5.52899pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 20.233 11.4899\\\" width=\\\"20.233pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-242\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.915,3.132)\\\"><use xlink:href=\\\"#g50-106\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.602,0)\\\"></path></g></svg><span></span><svg height=\\\"11.4899pt\\\" style=\\\"vertical-align:-5.52899pt\\\" version=\\\"1.1\\\" viewbox=\\\"23.8151838 -5.96091 10.514 11.4899\\\" width=\\\"10.514pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.865,0)\\\"><use xlink:href=\\\"#g113-242\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,29.78,3.132)\\\"><use xlink:href=\\\"#g50-107\\\"></use></g></svg></span> represents the adjacency of vertices <svg height=\\\"9.25202pt\\\" style=\\\"vertical-align:-3.29111pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 9.09247 9.25202\\\" width=\\\"9.09247pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-242\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.915,3.132)\\\"><use xlink:href=\\\"#g50-106\\\"></use></g></svg> and <svg height=\\\"11.4899pt\\\" style=\\\"vertical-align:-5.52899pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 10.4626 11.4899\\\" width=\\\"10.4626pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-242\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.915,3.132)\\\"><use xlink:href=\\\"#g50-107\\\"></use></g></svg> in <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g></svg>.</span> Establishing relationships between two topological indices holds significant importance for researchers. Some implicit inequality relationships between <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 14.0301 11.927\\\" width=\\\"14.0301pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g></svg> and <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 15.2698 11.927\\\" width=\\\"15.2698pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-82\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.321,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g></svg> have been derived so far. In this paper, we establish explicit inequality relationships between <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 14.0301 11.927\\\" width=\\\"14.0301pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g></svg> and <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 15.2698 11.927\\\" width=\\\"15.2698pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-82\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.321,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g></svg>.</span> Also, we determine linear inequality relationships between these graph invariants. Moreover, we obtain some new inequalities for various vertex-degree-based topological indices by the appropriate choice of <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.51131 6.1673\\\" width=\\\"7.51131pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g></svg>.</span>\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8204742\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/8204742","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Randić 型图不变式是被广泛研究的基于顶点度的拓扑指数,近年来备受瞩目。一般 Randić 指数和零阶一般 Randić 指数是 Randić 型图不变式,对有顶点集的图的定义分别为 和 ,其中 是任意实数,表示顶点的度数,表示顶点的邻接度,在 。建立两个拓扑指数之间的关系对研究人员来说非常重要。迄今为止,人们已经推导出了 和 之间的一些隐式不等式关系。在本文中,我们建立了 和 之间的显式不等式关系。同时,我们还确定了这些图不变式之间的线性不等式关系。此外,我们还通过对 ......的适当选择,为各种基于顶点度的拓扑指数得到了一些新的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Inequalities between General Randić-Type Graph Invariants
The Randić-type graph invariants are extensively investigated vertex-degree-based topological indices and have gained much prominence in recent years. The general Randić and zeroth-order general Randić indices are Randić-type graph invariants and are defined for a graph with vertex set as and , respectively, where is an arbitrary real number, denotes the degree of a vertex , and represents the adjacency of vertices and in . Establishing relationships between two topological indices holds significant importance for researchers. Some implicit inequality relationships between and have been derived so far. In this paper, we establish explicit inequality relationships between and . Also, we determine linear inequality relationships between these graph invariants. Moreover, we obtain some new inequalities for various vertex-degree-based topological indices by the appropriate choice of .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信