卤化锂固体电解质中增强的相关迁移引发的超离子电导率

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rui Li, Pushun Lu, Xinmiao Liang, Liwei Liu, Maxim Avdeev, Zhi Deng, Shuai Li, Kaiqi Xu, Jiwen Feng, Rui Si, Fan Wu*, Zhizhen Zhang* and Yong-Sheng Hu*, 
{"title":"卤化锂固体电解质中增强的相关迁移引发的超离子电导率","authors":"Rui Li,&nbsp;Pushun Lu,&nbsp;Xinmiao Liang,&nbsp;Liwei Liu,&nbsp;Maxim Avdeev,&nbsp;Zhi Deng,&nbsp;Shuai Li,&nbsp;Kaiqi Xu,&nbsp;Jiwen Feng,&nbsp;Rui Si,&nbsp;Fan Wu*,&nbsp;Zhizhen Zhang* and Yong-Sheng Hu*,&nbsp;","doi":"10.1021/acsenergylett.3c02496","DOIUrl":null,"url":null,"abstract":"<p >Lithium halides are experiencing reflorescence as a promising solid electrolyte in all-solid-state batteries (ASSBs) owing to their moderate conductivities and high oxidation potential. Herein we report new lithium-superionic chlorides, Li<sub>3–<i>x</i></sub>Sc<sub>1–<i>x</i></sub>Zr<sub><i>x</i></sub>Cl<sub>6</sub> and Li<sub>3–<i>x</i></sub>Sc<sub>1–<i>x</i></sub>Hf<sub><i>x</i></sub>Cl<sub>6</sub> (<i>x</i> = 0.25, 0.50, 0.625, 0.75), that demonstrate high ionic conductivities up to 2.2 mS cm<sup>–1</sup> at room temperature coupled with low activation energy barriers (0.31 and 0.33 eV for Zr and Hf-analogy, respectively). This notably improved conductivity upon Zr<sup>4+</sup>/Hf<sup>4+</sup> substitution is ascribed to the decreased energy barrier along the <i>c</i> axis and enhanced correlated migration invoked by the tuned Li<sup>+</sup>/vacancy concentration. Evaluation in solid-state cells further confirmed the potential of this electrolyte to be used in high voltage ASSBs. Our work elucidates the impact of tuned cationic/vacancy concentration and consequently enhanced correlated migration on cationic conductivity. This strategy can be extended to other systems and serve as a guideline for the design of fast ion conductors.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 3","pages":"1043–1052"},"PeriodicalIF":19.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superionic Conductivity Invoked by Enhanced Correlation Migration in Lithium Halides Solid Electrolytes\",\"authors\":\"Rui Li,&nbsp;Pushun Lu,&nbsp;Xinmiao Liang,&nbsp;Liwei Liu,&nbsp;Maxim Avdeev,&nbsp;Zhi Deng,&nbsp;Shuai Li,&nbsp;Kaiqi Xu,&nbsp;Jiwen Feng,&nbsp;Rui Si,&nbsp;Fan Wu*,&nbsp;Zhizhen Zhang* and Yong-Sheng Hu*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.3c02496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium halides are experiencing reflorescence as a promising solid electrolyte in all-solid-state batteries (ASSBs) owing to their moderate conductivities and high oxidation potential. Herein we report new lithium-superionic chlorides, Li<sub>3–<i>x</i></sub>Sc<sub>1–<i>x</i></sub>Zr<sub><i>x</i></sub>Cl<sub>6</sub> and Li<sub>3–<i>x</i></sub>Sc<sub>1–<i>x</i></sub>Hf<sub><i>x</i></sub>Cl<sub>6</sub> (<i>x</i> = 0.25, 0.50, 0.625, 0.75), that demonstrate high ionic conductivities up to 2.2 mS cm<sup>–1</sup> at room temperature coupled with low activation energy barriers (0.31 and 0.33 eV for Zr and Hf-analogy, respectively). This notably improved conductivity upon Zr<sup>4+</sup>/Hf<sup>4+</sup> substitution is ascribed to the decreased energy barrier along the <i>c</i> axis and enhanced correlated migration invoked by the tuned Li<sup>+</sup>/vacancy concentration. Evaluation in solid-state cells further confirmed the potential of this electrolyte to be used in high voltage ASSBs. Our work elucidates the impact of tuned cationic/vacancy concentration and consequently enhanced correlated migration on cationic conductivity. This strategy can be extended to other systems and serve as a guideline for the design of fast ion conductors.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 3\",\"pages\":\"1043–1052\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02496\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.3c02496","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

卤化锂因其适中的电导率和较高的氧化电位,正在成为全固态电池(ASSB)中一种前景广阔的固体电解质。在此,我们报告了新型锂超铈氯化物 Li3-xSc1-xZrxCl6 和 Li3-xSc1-xHfxCl6(x = 0.25、0.50、0.625、0.75),它们在室温下具有高达 2.2 mS cm-1 的高离子电导率,同时活化能势垒较低(Zr 和 Hf-analogy 分别为 0.31 和 0.33 eV)。Zr4+/Hf4+ 取代后电导率的显著提高归因于沿 c 轴的能量势垒降低,以及调整的 Li+/ 空位浓度增强了相关迁移。在固态电池中进行的评估进一步证实了这种电解质在高压 ASSB 中的应用潜力。我们的工作阐明了调整阳离子/空位浓度的影响,以及由此增强的相关迁移对阳离子电导率的影响。这种策略可以推广到其他系统,并作为设计快速离子导体的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superionic Conductivity Invoked by Enhanced Correlation Migration in Lithium Halides Solid Electrolytes

Superionic Conductivity Invoked by Enhanced Correlation Migration in Lithium Halides Solid Electrolytes

Superionic Conductivity Invoked by Enhanced Correlation Migration in Lithium Halides Solid Electrolytes

Lithium halides are experiencing reflorescence as a promising solid electrolyte in all-solid-state batteries (ASSBs) owing to their moderate conductivities and high oxidation potential. Herein we report new lithium-superionic chlorides, Li3–xSc1–xZrxCl6 and Li3–xSc1–xHfxCl6 (x = 0.25, 0.50, 0.625, 0.75), that demonstrate high ionic conductivities up to 2.2 mS cm–1 at room temperature coupled with low activation energy barriers (0.31 and 0.33 eV for Zr and Hf-analogy, respectively). This notably improved conductivity upon Zr4+/Hf4+ substitution is ascribed to the decreased energy barrier along the c axis and enhanced correlated migration invoked by the tuned Li+/vacancy concentration. Evaluation in solid-state cells further confirmed the potential of this electrolyte to be used in high voltage ASSBs. Our work elucidates the impact of tuned cationic/vacancy concentration and consequently enhanced correlated migration on cationic conductivity. This strategy can be extended to other systems and serve as a guideline for the design of fast ion conductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信