{"title":"非常退化凸积分最小值的较高正则性","authors":"Antonio Giuseppe Grimaldi","doi":"10.1016/j.na.2024.113520","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider minimizers of integral functionals of the type <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>γ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow><mrow><mi>p</mi></mrow></msubsup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>for <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, is a possibly vector-valued function. Here, <span><math><msub><mrow><mrow><mo>|</mo><mi>⋅</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msub></math></span> is the associated norm of a bounded, symmetric and coercive bilinear form on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup></math></span>. We prove that <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is continuous in <span><math><mi>Ω</mi></math></span>, for any continuous function <span><math><mrow><mi>K</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> vanishing on <span><math><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mn>1</mn></mrow><mo>}</mo></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher regularity for minimizers of very degenerate convex integrals\",\"authors\":\"Antonio Giuseppe Grimaldi\",\"doi\":\"10.1016/j.na.2024.113520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider minimizers of integral functionals of the type <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>γ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow><mrow><mi>p</mi></mrow></msubsup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>for <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>, with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, is a possibly vector-valued function. Here, <span><math><msub><mrow><mrow><mo>|</mo><mi>⋅</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msub></math></span> is the associated norm of a bounded, symmetric and coercive bilinear form on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup></math></span>. We prove that <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is continuous in <span><math><mi>Ω</mi></math></span>, for any continuous function <span><math><mrow><mi>K</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></mrow></math></span> vanishing on <span><math><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>N</mi></mrow></msup><mo>:</mo><msub><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>γ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mn>1</mn></mrow><mo>}</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000397\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000397","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Higher regularity for minimizers of very degenerate convex integrals
In this paper, we consider minimizers of integral functionals of the type for , where , with , is a possibly vector-valued function. Here, is the associated norm of a bounded, symmetric and coercive bilinear form on . We prove that is continuous in , for any continuous function vanishing on .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.