{"title":"离散非线性薛定谔方程的索波列夫规范增长和强收敛性","authors":"Quentin Chauleur","doi":"10.1016/j.na.2024.113517","DOIUrl":null,"url":null,"abstract":"<div><p>We show the strong convergence in arbitrary Sobolev norms of solutions of the discrete nonlinear Schrödinger on an infinite lattice towards those of the nonlinear Schrödinger equation on the whole space. We restrict our attention to the one and two-dimensional case, with a set of parameters which implies global well-posedness for the continuous equation. Our proof relies on the use of bilinear estimates for the Shannon interpolation as well as the control of the growth of discrete Sobolev norms that we both prove.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of Sobolev norms and strong convergence for the discrete nonlinear Schrödinger equation\",\"authors\":\"Quentin Chauleur\",\"doi\":\"10.1016/j.na.2024.113517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show the strong convergence in arbitrary Sobolev norms of solutions of the discrete nonlinear Schrödinger on an infinite lattice towards those of the nonlinear Schrödinger equation on the whole space. We restrict our attention to the one and two-dimensional case, with a set of parameters which implies global well-posedness for the continuous equation. Our proof relies on the use of bilinear estimates for the Shannon interpolation as well as the control of the growth of discrete Sobolev norms that we both prove.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000361\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth of Sobolev norms and strong convergence for the discrete nonlinear Schrödinger equation
We show the strong convergence in arbitrary Sobolev norms of solutions of the discrete nonlinear Schrödinger on an infinite lattice towards those of the nonlinear Schrödinger equation on the whole space. We restrict our attention to the one and two-dimensional case, with a set of parameters which implies global well-posedness for the continuous equation. Our proof relies on the use of bilinear estimates for the Shannon interpolation as well as the control of the growth of discrete Sobolev norms that we both prove.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.