{"title":"共轭聚合物-波长量子点(MDMO-PPV:CsPbBr3)纳米复合材料:混溶性、纳米结构和性能","authors":"Getachew Welyab , Mulualem Abebe , Dhakshnamoorthy Mani , Jibin Keloth Paduvilan , Lishin Thottathi , Aparna Thankappan , Sabu Thomas , Tadele Hunde Wondimu , Jung Yong Kim","doi":"10.1016/j.nxnano.2024.100053","DOIUrl":null,"url":null,"abstract":"<div><p>All-inorganic cesium lead bromide (CsPbBr<sub>3</sub>) quantum dots (QDs) have received a surge of attention in the field of light-emitting diode (LED) display and lighting. Hence, it is interesting to study the composite film composed of CsPbBr<sub>3</sub> and light-emitting MDMO-PPV matrix polymer. In this study, we investigate the phase behavior among the components, MDMO-PPV, toluene (solvent), and oleic acid and oleylamine (the surface ligands for QDs) based on the Flory-Huggins theory with the group contribution method for the first time. Here we find that the MDMO-PPV and ligand molecules are immiscible whereas MDMO-PPV and toluene are partially miscible. Then through the x-ray diffraction (XRD) patterns, we demonstrate that CsPbBr<sub>3</sub> QDs form a nanoscale domain with ∼33–52 nm crystallites in the MDMO-PPV matrix. Furthermore, the scanning electron microscope (SEM) images display that CsPbBr<sub>3</sub> QDs can be highly aggregated at MDMO-PPV:CsPbBr<sub>3</sub>= 50:50 composition. Then, through the ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, the enhancement of PL intensity is observed at ∼30–50 wt% CsPbBr<sub>3</sub>. Finally, the electrochemical impedance spectra indicate that the composite film exhibits less resistance (∼3.2×10<sup>4</sup> Ω) than the pure MDMO-PPV film (∼1.4×10<sup>7</sup> Ω), suggesting that the MDMO-PPV<img>CsPbBr<sub>3</sub> composite approach is promising for electrochemical and optoelectronic applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000147/pdfft?md5=9f654e77f23558b278566a0185f2cc5c&pid=1-s2.0-S2949829524000147-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Conjugated polymer-perovskite quantum dot (MDMO-PPV:CsPbBr3) nanocomposites: Miscibility, nano-structures, and properties\",\"authors\":\"Getachew Welyab , Mulualem Abebe , Dhakshnamoorthy Mani , Jibin Keloth Paduvilan , Lishin Thottathi , Aparna Thankappan , Sabu Thomas , Tadele Hunde Wondimu , Jung Yong Kim\",\"doi\":\"10.1016/j.nxnano.2024.100053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>All-inorganic cesium lead bromide (CsPbBr<sub>3</sub>) quantum dots (QDs) have received a surge of attention in the field of light-emitting diode (LED) display and lighting. Hence, it is interesting to study the composite film composed of CsPbBr<sub>3</sub> and light-emitting MDMO-PPV matrix polymer. In this study, we investigate the phase behavior among the components, MDMO-PPV, toluene (solvent), and oleic acid and oleylamine (the surface ligands for QDs) based on the Flory-Huggins theory with the group contribution method for the first time. Here we find that the MDMO-PPV and ligand molecules are immiscible whereas MDMO-PPV and toluene are partially miscible. Then through the x-ray diffraction (XRD) patterns, we demonstrate that CsPbBr<sub>3</sub> QDs form a nanoscale domain with ∼33–52 nm crystallites in the MDMO-PPV matrix. Furthermore, the scanning electron microscope (SEM) images display that CsPbBr<sub>3</sub> QDs can be highly aggregated at MDMO-PPV:CsPbBr<sub>3</sub>= 50:50 composition. Then, through the ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, the enhancement of PL intensity is observed at ∼30–50 wt% CsPbBr<sub>3</sub>. Finally, the electrochemical impedance spectra indicate that the composite film exhibits less resistance (∼3.2×10<sup>4</sup> Ω) than the pure MDMO-PPV film (∼1.4×10<sup>7</sup> Ω), suggesting that the MDMO-PPV<img>CsPbBr<sub>3</sub> composite approach is promising for electrochemical and optoelectronic applications.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000147/pdfft?md5=9f654e77f23558b278566a0185f2cc5c&pid=1-s2.0-S2949829524000147-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conjugated polymer-perovskite quantum dot (MDMO-PPV:CsPbBr3) nanocomposites: Miscibility, nano-structures, and properties
All-inorganic cesium lead bromide (CsPbBr3) quantum dots (QDs) have received a surge of attention in the field of light-emitting diode (LED) display and lighting. Hence, it is interesting to study the composite film composed of CsPbBr3 and light-emitting MDMO-PPV matrix polymer. In this study, we investigate the phase behavior among the components, MDMO-PPV, toluene (solvent), and oleic acid and oleylamine (the surface ligands for QDs) based on the Flory-Huggins theory with the group contribution method for the first time. Here we find that the MDMO-PPV and ligand molecules are immiscible whereas MDMO-PPV and toluene are partially miscible. Then through the x-ray diffraction (XRD) patterns, we demonstrate that CsPbBr3 QDs form a nanoscale domain with ∼33–52 nm crystallites in the MDMO-PPV matrix. Furthermore, the scanning electron microscope (SEM) images display that CsPbBr3 QDs can be highly aggregated at MDMO-PPV:CsPbBr3= 50:50 composition. Then, through the ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, the enhancement of PL intensity is observed at ∼30–50 wt% CsPbBr3. Finally, the electrochemical impedance spectra indicate that the composite film exhibits less resistance (∼3.2×104 Ω) than the pure MDMO-PPV film (∼1.4×107 Ω), suggesting that the MDMO-PPVCsPbBr3 composite approach is promising for electrochemical and optoelectronic applications.