Igor Noll Guagnoni , Katja Bundgaard Last , Emil Rindom , Tobias Wang
{"title":"胰腺不会对消化蟒的心率产生非肾上腺素能-非胆碱能刺激。","authors":"Igor Noll Guagnoni , Katja Bundgaard Last , Emil Rindom , Tobias Wang","doi":"10.1016/j.cbpa.2024.111608","DOIUrl":null,"url":null,"abstract":"<div><p>Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pancreas does not contribute to the non-adrenergic-non-cholinergic stimulation of heart rate in digesting pythons\",\"authors\":\"Igor Noll Guagnoni , Katja Bundgaard Last , Emil Rindom , Tobias Wang\",\"doi\":\"10.1016/j.cbpa.2024.111608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1095643324000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The pancreas does not contribute to the non-adrenergic-non-cholinergic stimulation of heart rate in digesting pythons
Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.