Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng
{"title":"中国空间站微重力主动隔振系统的飞行测试结果。","authors":"Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng","doi":"10.1038/s41526-024-00359-7","DOIUrl":null,"url":null,"abstract":"<p><p>The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg<sub>0</sub> (where g<sub>0</sub> = 9.80665 m ∙ s<sup>-2</sup>) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg<sub>0</sub> at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg<sub>0</sub> at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372040/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flight test results for microgravity active vibration isolation system on-board Chinese Space Station.\",\"authors\":\"Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng\",\"doi\":\"10.1038/s41526-024-00359-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg<sub>0</sub> (where g<sub>0</sub> = 9.80665 m ∙ s<sup>-2</sup>) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg<sub>0</sub> at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg<sub>0</sub> at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00359-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00359-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Flight test results for microgravity active vibration isolation system on-board Chinese Space Station.
The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg0 (where g0 = 9.80665 m ∙ s-2) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg0 at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg0 at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.