中国空间站微重力主动隔振系统的飞行测试结果。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng
{"title":"中国空间站微重力主动隔振系统的飞行测试结果。","authors":"Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng","doi":"10.1038/s41526-024-00359-7","DOIUrl":null,"url":null,"abstract":"<p><p>The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg<sub>0</sub> (where g<sub>0</sub> = 9.80665 m ∙ s<sup>-2</sup>) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg<sub>0</sub> at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg<sub>0</sub> at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372040/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flight test results for microgravity active vibration isolation system on-board Chinese Space Station.\",\"authors\":\"Wei Liu, Yang Gao, Long Zhang, Tianji Zou, Mengxi Yu, Tuo Zheng\",\"doi\":\"10.1038/s41526-024-00359-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg<sub>0</sub> (where g<sub>0</sub> = 9.80665 m ∙ s<sup>-2</sup>) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg<sub>0</sub> at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg<sub>0</sub> at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00359-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00359-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

流体物理研究架(FPR)是中国空间站上用于进行微重力流体物理实验的研究平台。该研究平台包括微重力主动振动隔离系统(MAVIS),用于隔离 FPR 与空间站本身产生的干扰。MAVIS 是一个由定子和浮子组成的结构平台,通过非接触式电磁致动器、高精度加速度计和位移传感器对定子和浮子进行监测和控制。定子固定在 FPR 上,而浮子则作为支持有效载荷的隔振平台,仅通过脐带与定子连接,脐带主要包括电源和数据线。控制器在设计时对脐带缆的刚度进行了修正,以尽量减少脐带缆对 MAVIS 隔振性能的影响。FPR的在轨测试结果表明,在微重力模式下,MAVIS能够在0.01-125 Hz的频率范围内达到1-30 μg0(其中g0 = 9.80665 m ∙ s-2)的微重力水平,频率大于2 Hz的干扰被衰减10倍以上。在振动激励模式下,MAVIS 在频率为 0.00995 Hz 时产生的最小振动加速度为 0.4091 μg0,在频率为 9.999 Hz 时产生的最大加速度为 6253 μg0。因此,MAVIS 为开展微重力实验提供了高度稳定的环境,促进了微重力流体物理学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flight test results for microgravity active vibration isolation system on-board Chinese Space Station.

The Fluid Physics Research Rack (FPR) is a research platform employed on-board the Chinese Space Station for conducting microgravity fluid physics experiments. The research platform includes the Microgravity Active Vibration Isolation System (MAVIS) for isolating the FPR from disturbances arising from the space station itself. The MAVIS is a structural platform consisting of a stator and floater that are monitored and controlled with non-contact electromagnetic actuators, high-precision accelerometers, and displacement transducers. The stator is fixed to the FPR, while the floater serves as a vibration isolation platform supporting payloads, and is connected with the stator only with umbilicals that mainly comprise power and data cables. The controller was designed with a correction for the umbilical stiffness to minimize the effect of the umbilicals on the vibration isolation performance of the MAVIS. In-orbit test results of the FPR demonstrate that the MAVIS was able to achieve a microgravity level of 1-30 μg0 (where g0 = 9.80665 m ∙ s-2) in the frequency range of 0.01-125 Hz under the microgravity mode, and disturbances with a frequency greater than 2 Hz are attenuated by more than 10-fold. Under the vibration excitation mode, the MAVIS generated a minimum vibration acceleration of 0.4091 μg0 at a frequency of 0.00995 Hz and a maximum acceleration of 6253 μg0 at a frequency of 9.999 Hz. Therefore, the MAVIS provides a highly stable environment for conducting microgravity experiments, and promotes the development of microgravity fluid physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信