Tao-Hu Zhou, Xiu-Xiu Zhou, Jiong Ni, Yan-Qing Ma, Fang-Yi Xu, Bing Fan, Yu Guan, Xin-Ang Jiang, Xiao-Qing Lin, Jie Li, Yi Xia, Xiang Wang, Yun Wang, Wen-Jun Huang, Wen-Ting Tu, Peng Dong, Zhao-Bin Li, Shi-Yuan Liu, Li Fan
{"title":"CT 全肺放射学提名图:肺功能评估和慢性阻塞性肺病鉴别的潜在生物标记。","authors":"Tao-Hu Zhou, Xiu-Xiu Zhou, Jiong Ni, Yan-Qing Ma, Fang-Yi Xu, Bing Fan, Yu Guan, Xin-Ang Jiang, Xiao-Qing Lin, Jie Li, Yi Xia, Xiang Wang, Yun Wang, Wen-Jun Huang, Wen-Ting Tu, Peng Dong, Zhao-Bin Li, Shi-Yuan Liu, Li Fan","doi":"10.1186/s40779-024-00516-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients.</p><p><strong>Methods: </strong>This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts.</p><p><strong>Results: </strong>Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869-0.906], 0.874 (95%CI 0.844-0.904) and 0.846 (95%CI 0.822-0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model.</p><p><strong>Conclusions: </strong>The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"14"},"PeriodicalIF":16.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877876/pdf/","citationCount":"0","resultStr":"{\"title\":\"CT whole lung radiomic nomogram: a potential biomarker for lung function evaluation and identification of COPD.\",\"authors\":\"Tao-Hu Zhou, Xiu-Xiu Zhou, Jiong Ni, Yan-Qing Ma, Fang-Yi Xu, Bing Fan, Yu Guan, Xin-Ang Jiang, Xiao-Qing Lin, Jie Li, Yi Xia, Xiang Wang, Yun Wang, Wen-Jun Huang, Wen-Ting Tu, Peng Dong, Zhao-Bin Li, Shi-Yuan Liu, Li Fan\",\"doi\":\"10.1186/s40779-024-00516-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients.</p><p><strong>Methods: </strong>This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts.</p><p><strong>Results: </strong>Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869-0.906], 0.874 (95%CI 0.844-0.904) and 0.846 (95%CI 0.822-0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model.</p><p><strong>Conclusions: </strong>The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.</p>\",\"PeriodicalId\":18581,\"journal\":{\"name\":\"Military Medical Research\",\"volume\":\"11 1\",\"pages\":\"14\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40779-024-00516-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-024-00516-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
CT whole lung radiomic nomogram: a potential biomarker for lung function evaluation and identification of COPD.
Background: Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients.
Methods: This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts.
Results: Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869-0.906], 0.874 (95%CI 0.844-0.904) and 0.846 (95%CI 0.822-0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model.
Conclusions: The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.