Jorge E. López-Pérez, Jeffrey M. Goessling, Christopher M. Murray
{"title":"测试雄激素诱导的免疫抑制:环境雄激素作为类固醇与免疫相互作用的模型系统。","authors":"Jorge E. López-Pérez, Jeffrey M. Goessling, Christopher M. Murray","doi":"10.1002/jez.2795","DOIUrl":null,"url":null,"abstract":"<p>It is well known that hormones influence and direct most facets of physiology; however, there is still contention regarding the directions of certain relationships, for example, between gonadal hormones and immunity. Among the many proposed relationships relating to gonadal–immune interactions, support for immunosuppressive effects of androgens remains prominent within physiological literature. Although ample study has been directed toward the immunosuppressive effects of androgens, considerable disagreement remains regarding their influence on immune function. In this study, we test the hypothesis that androgens inhibit immunocompetence in the American alligator (<i>Alligator mississippiensis</i>). Developing alligators were incubated at female-producing temperatures with a subset of individuals being exposed to 17-α-methyltestosterone (MT) before sexual determination. 17-α-methyltestosterone is a potent androgen, not aromatizable by crocodilians, that has been found to exert masculinizing effects in exposed crocodilian populations in vivo and in vitro. Additionally, a subset of animals was exposed to a novel antigen to quantify innate and acquired immune function. We recovered no significant differences in leukocyte ratios or proportions between groups and found no significant differences in innate immune function as measured by hemolysis-hemagglutination. However, we did find significant differences in acquired immune function, where masculinized individuals expressed greater antibody titers. Our findings reject the hypothesis that androgens suppress immune function; rather, androgens may be immunoenhancing to acquired humoral responses and neutral to innate humoral immunity in crocodilians.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing androgen-induced immunosuppression: Environmental androgens as a model system for steroid-immune interaction\",\"authors\":\"Jorge E. López-Pérez, Jeffrey M. Goessling, Christopher M. Murray\",\"doi\":\"10.1002/jez.2795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well known that hormones influence and direct most facets of physiology; however, there is still contention regarding the directions of certain relationships, for example, between gonadal hormones and immunity. Among the many proposed relationships relating to gonadal–immune interactions, support for immunosuppressive effects of androgens remains prominent within physiological literature. Although ample study has been directed toward the immunosuppressive effects of androgens, considerable disagreement remains regarding their influence on immune function. In this study, we test the hypothesis that androgens inhibit immunocompetence in the American alligator (<i>Alligator mississippiensis</i>). Developing alligators were incubated at female-producing temperatures with a subset of individuals being exposed to 17-α-methyltestosterone (MT) before sexual determination. 17-α-methyltestosterone is a potent androgen, not aromatizable by crocodilians, that has been found to exert masculinizing effects in exposed crocodilian populations in vivo and in vitro. Additionally, a subset of animals was exposed to a novel antigen to quantify innate and acquired immune function. We recovered no significant differences in leukocyte ratios or proportions between groups and found no significant differences in innate immune function as measured by hemolysis-hemagglutination. However, we did find significant differences in acquired immune function, where masculinized individuals expressed greater antibody titers. Our findings reject the hypothesis that androgens suppress immune function; rather, androgens may be immunoenhancing to acquired humoral responses and neutral to innate humoral immunity in crocodilians.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.2795\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Testing androgen-induced immunosuppression: Environmental androgens as a model system for steroid-immune interaction
It is well known that hormones influence and direct most facets of physiology; however, there is still contention regarding the directions of certain relationships, for example, between gonadal hormones and immunity. Among the many proposed relationships relating to gonadal–immune interactions, support for immunosuppressive effects of androgens remains prominent within physiological literature. Although ample study has been directed toward the immunosuppressive effects of androgens, considerable disagreement remains regarding their influence on immune function. In this study, we test the hypothesis that androgens inhibit immunocompetence in the American alligator (Alligator mississippiensis). Developing alligators were incubated at female-producing temperatures with a subset of individuals being exposed to 17-α-methyltestosterone (MT) before sexual determination. 17-α-methyltestosterone is a potent androgen, not aromatizable by crocodilians, that has been found to exert masculinizing effects in exposed crocodilian populations in vivo and in vitro. Additionally, a subset of animals was exposed to a novel antigen to quantify innate and acquired immune function. We recovered no significant differences in leukocyte ratios or proportions between groups and found no significant differences in innate immune function as measured by hemolysis-hemagglutination. However, we did find significant differences in acquired immune function, where masculinized individuals expressed greater antibody titers. Our findings reject the hypothesis that androgens suppress immune function; rather, androgens may be immunoenhancing to acquired humoral responses and neutral to innate humoral immunity in crocodilians.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.