Jie Li, Ming Gao, Pin Wang, Hongyan Li, Jiankun Liu, Fang Yuan, Xiangjian Zhang, Songyun Zhang
{"title":"表达:曲克芦丁通过调节糖尿病小鼠的微生物组成和肠道屏障功能,改善认知功能和海马中 FOXF2 的表达。","authors":"Jie Li, Ming Gao, Pin Wang, Hongyan Li, Jiankun Liu, Fang Yuan, Xiangjian Zhang, Songyun Zhang","doi":"10.1177/10815589241235657","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have found that gut microbes may affect blood-brain barrier (BBB) integrity. This study was to investigate the relationship between gut microbes and forkhead box F2 (FOXF2) and the mechanism of troxerutin improving diabetic cognitive dysfunction (DCD). Diabetic mice were used in this study for the prophylactic application of troxerutin (60 mg/kg/d) for 8 weeks. The cognitive function was assessed using the Morris water maze (MWM) and novel object recognition (NOR) tasks, and the changes of intestinal microbial composition were observed through <i>16S rRNA</i> gene sequencing. The content of short-chain fatty acids (SCFAs) in feces was determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the intestinal barrier function was assessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. Troxerutin up-regulated FOXF2 expression in the hippocampus of mice, improving DCD. Meanwhile, it reversed the intestinal microbial composition (increased the abundance of the phylum Bacteroidota, as well as fecal propionic acid and butyric acid levels) and improved the intestinal barrier (increased the level of claudin-1 and significantly reduced the circulating lipopolysaccharide binding protein (LBP) levels). When intestinal microorganisms were removed with an antibiotic cocktail, the improvement of hippocampal FOXF2 expression and DCD by troxerutin attenuated accordingly, suggesting that troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier. In summary, troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier.</p>","PeriodicalId":16112,"journal":{"name":"Journal of Investigative Medicine","volume":" ","pages":"438-448"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Troxerutin improves cognitive function and forkhead box F2 expression in the hippocampus via modulating the microbial composition and the intestinal barrier function in diabetes mellitus mice.\",\"authors\":\"Jie Li, Ming Gao, Pin Wang, Hongyan Li, Jiankun Liu, Fang Yuan, Xiangjian Zhang, Songyun Zhang\",\"doi\":\"10.1177/10815589241235657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have found that gut microbes may affect blood-brain barrier (BBB) integrity. This study was to investigate the relationship between gut microbes and forkhead box F2 (FOXF2) and the mechanism of troxerutin improving diabetic cognitive dysfunction (DCD). Diabetic mice were used in this study for the prophylactic application of troxerutin (60 mg/kg/d) for 8 weeks. The cognitive function was assessed using the Morris water maze (MWM) and novel object recognition (NOR) tasks, and the changes of intestinal microbial composition were observed through <i>16S rRNA</i> gene sequencing. The content of short-chain fatty acids (SCFAs) in feces was determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the intestinal barrier function was assessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. Troxerutin up-regulated FOXF2 expression in the hippocampus of mice, improving DCD. Meanwhile, it reversed the intestinal microbial composition (increased the abundance of the phylum Bacteroidota, as well as fecal propionic acid and butyric acid levels) and improved the intestinal barrier (increased the level of claudin-1 and significantly reduced the circulating lipopolysaccharide binding protein (LBP) levels). When intestinal microorganisms were removed with an antibiotic cocktail, the improvement of hippocampal FOXF2 expression and DCD by troxerutin attenuated accordingly, suggesting that troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier. In summary, troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier.</p>\",\"PeriodicalId\":16112,\"journal\":{\"name\":\"Journal of Investigative Medicine\",\"volume\":\" \",\"pages\":\"438-448\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Investigative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10815589241235657\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investigative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10815589241235657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Troxerutin improves cognitive function and forkhead box F2 expression in the hippocampus via modulating the microbial composition and the intestinal barrier function in diabetes mellitus mice.
Recent studies have found that gut microbes may affect blood-brain barrier (BBB) integrity. This study was to investigate the relationship between gut microbes and forkhead box F2 (FOXF2) and the mechanism of troxerutin improving diabetic cognitive dysfunction (DCD). Diabetic mice were used in this study for the prophylactic application of troxerutin (60 mg/kg/d) for 8 weeks. The cognitive function was assessed using the Morris water maze (MWM) and novel object recognition (NOR) tasks, and the changes of intestinal microbial composition were observed through 16S rRNA gene sequencing. The content of short-chain fatty acids (SCFAs) in feces was determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the intestinal barrier function was assessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. Troxerutin up-regulated FOXF2 expression in the hippocampus of mice, improving DCD. Meanwhile, it reversed the intestinal microbial composition (increased the abundance of the phylum Bacteroidota, as well as fecal propionic acid and butyric acid levels) and improved the intestinal barrier (increased the level of claudin-1 and significantly reduced the circulating lipopolysaccharide binding protein (LBP) levels). When intestinal microorganisms were removed with an antibiotic cocktail, the improvement of hippocampal FOXF2 expression and DCD by troxerutin attenuated accordingly, suggesting that troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier. In summary, troxerutin improved DCD by up-regulating the expression of hippocampal FOXF2 through the regulation of intestinal microbial composition and the intestinal barrier.
期刊介绍:
Journal of Investigative Medicine (JIM) is the official publication of the American Federation for Medical Research. The journal is peer-reviewed and publishes high-quality original articles and reviews in the areas of basic, clinical, and translational medical research.
JIM publishes on all topics and specialty areas that are critical to the conduct of the entire spectrum of biomedical research: from the translation of clinical observations at the bedside, to basic and animal research to clinical research and the implementation of innovative medical care.