附带振子的方形板特征振动的有限元建模

IF 0.5 Q3 MATHEMATICS
D. M. Korosteleva, S. I. Solov’ev
{"title":"附带振子的方形板特征振动的有限元建模","authors":"D. M. Korosteleva, S. I. Solov’ev","doi":"10.3103/s1066369x2311004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new symmetric linear variational statement is proposed for the problem of eigenvibrations of a plate with an attached oscillator. The existence of the sequence of positive eigenvalues of finite multiplicity with the limit point at infinity and the corresponding complete orthonormal system of eigenvectors is established. A new symmetric scheme of the finite element method with Hermite finite elements is stated. Error estimates consistent with the solution smoothness for the approximate eigenvalues and approximate eigenvectors are proved. The results of numerical experiments illustrating the influence of the smoothness of the solution on the computation accuracy are presented.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"63 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Modeling of Eigenvibrations of a Square Plate with an Attached Oscillator\",\"authors\":\"D. M. Korosteleva, S. I. Solov’ev\",\"doi\":\"10.3103/s1066369x2311004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new symmetric linear variational statement is proposed for the problem of eigenvibrations of a plate with an attached oscillator. The existence of the sequence of positive eigenvalues of finite multiplicity with the limit point at infinity and the corresponding complete orthonormal system of eigenvectors is established. A new symmetric scheme of the finite element method with Hermite finite elements is stated. Error estimates consistent with the solution smoothness for the approximate eigenvalues and approximate eigenvectors are proved. The results of numerical experiments illustrating the influence of the smoothness of the solution on the computation accuracy are presented.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x2311004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2311004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 针对附带振子的板的特征振动问题,提出了一种新的对称线性变分法。建立了极限点位于无穷大的有限倍率正特征值序列和相应的完整正交特征向量系统。阐述了使用 Hermite 有限元的有限元方法的新对称方案。证明了与近似特征值和近似特征向量的解平滑性一致的误差估计。数值实验结果说明了解的平滑度对计算精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Finite Element Modeling of Eigenvibrations of a Square Plate with an Attached Oscillator

Finite Element Modeling of Eigenvibrations of a Square Plate with an Attached Oscillator

Abstract

A new symmetric linear variational statement is proposed for the problem of eigenvibrations of a plate with an attached oscillator. The existence of the sequence of positive eigenvalues of finite multiplicity with the limit point at infinity and the corresponding complete orthonormal system of eigenvectors is established. A new symmetric scheme of the finite element method with Hermite finite elements is stated. Error estimates consistent with the solution smoothness for the approximate eigenvalues and approximate eigenvectors are proved. The results of numerical experiments illustrating the influence of the smoothness of the solution on the computation accuracy are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信