用对数-分数-有理函数逼近傅立叶算子的勒贝格常数

IF 0.5 Q3 MATHEMATICS
I. A. Shakirov
{"title":"用对数-分数-有理函数逼近傅立叶算子的勒贝格常数","authors":"I. A. Shakirov","doi":"10.3103/s1066369x23110099","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (nonmonotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"184 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of the Lebesgue Constant of the Fourier Operator by a Logarithmic-Fractional-Rational Function\",\"authors\":\"I. A. Shakirov\",\"doi\":\"10.3103/s1066369x23110099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (nonmonotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"184 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23110099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23110099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 经典傅里叶算子的 Lebesgue 常数由一个取决于三个参数的对数-分数-有理函数均匀逼近;它们是利用对数和有理逼近的特定性质定义的。对具有不确定(非单调)行为的相应残差项进行了严格研究。所获得的近似结果将已知结果加强了两个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of the Lebesgue Constant of the Fourier Operator by a Logarithmic-Fractional-Rational Function

Abstract

The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (nonmonotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信