Paria Sadeghian, Arman Golshan, Mia Xiaoyun Zhao, Johan Håkansson
{"title":"基于 GPS 跟踪数据检测运输模式的深度半监督机器学习算法","authors":"Paria Sadeghian, Arman Golshan, Mia Xiaoyun Zhao, Johan Håkansson","doi":"10.1007/s11116-024-10472-x","DOIUrl":null,"url":null,"abstract":"<p>Transportation research has benefited from GPS tracking devices since a higher volume of data can be acquired. Trip information such as travel speed, time, and most visited locations can be easily extracted from raw GPS tracking data. However, transportation modes cannot be extracted directly and require more complex analytical processes. Common approaches for detecting travel modes heavily depend on manual labelling of trajectories with accurate trip information, which is inefficient in many aspects. This paper proposes a method of semi-supervised machine learning by using minimal labelled data. The method can accept GPS trajectory with adjustable length and extract latent information with long short-term memory (LSTM) Autoencoder. The method adopts a deep neural network architecture with three hidden layers to map the latent information to detect transportation mode. The proposed method is assessed by applying it to the case study where an accuracy of 93.94% can be achieved, which significantly outperforms similar studies.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"258 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep semi-supervised machine learning algorithm for detecting transportation modes based on GPS tracking data\",\"authors\":\"Paria Sadeghian, Arman Golshan, Mia Xiaoyun Zhao, Johan Håkansson\",\"doi\":\"10.1007/s11116-024-10472-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transportation research has benefited from GPS tracking devices since a higher volume of data can be acquired. Trip information such as travel speed, time, and most visited locations can be easily extracted from raw GPS tracking data. However, transportation modes cannot be extracted directly and require more complex analytical processes. Common approaches for detecting travel modes heavily depend on manual labelling of trajectories with accurate trip information, which is inefficient in many aspects. This paper proposes a method of semi-supervised machine learning by using minimal labelled data. The method can accept GPS trajectory with adjustable length and extract latent information with long short-term memory (LSTM) Autoencoder. The method adopts a deep neural network architecture with three hidden layers to map the latent information to detect transportation mode. The proposed method is assessed by applying it to the case study where an accuracy of 93.94% can be achieved, which significantly outperforms similar studies.</p>\",\"PeriodicalId\":49419,\"journal\":{\"name\":\"Transportation\",\"volume\":\"258 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11116-024-10472-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-024-10472-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A deep semi-supervised machine learning algorithm for detecting transportation modes based on GPS tracking data
Transportation research has benefited from GPS tracking devices since a higher volume of data can be acquired. Trip information such as travel speed, time, and most visited locations can be easily extracted from raw GPS tracking data. However, transportation modes cannot be extracted directly and require more complex analytical processes. Common approaches for detecting travel modes heavily depend on manual labelling of trajectories with accurate trip information, which is inefficient in many aspects. This paper proposes a method of semi-supervised machine learning by using minimal labelled data. The method can accept GPS trajectory with adjustable length and extract latent information with long short-term memory (LSTM) Autoencoder. The method adopts a deep neural network architecture with three hidden layers to map the latent information to detect transportation mode. The proposed method is assessed by applying it to the case study where an accuracy of 93.94% can be achieved, which significantly outperforms similar studies.
期刊介绍:
In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world.
These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.