James J Bull, Scott L Nuismer, Christopher H Remien, Megan E Griffiths, Rustom Antia
{"title":"重组可传播疫苗尽管具有超强感染能力,但其本质上是封闭的。","authors":"James J Bull, Scott L Nuismer, Christopher H Remien, Megan E Griffiths, Rustom Antia","doi":"10.1080/14760584.2024.2320845","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals.</p><p><strong>Areas covered: </strong>We present original theoretical arguments that, regardless of its R<sub>0</sub> value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic.</p><p><strong>Expert opinion: </strong>High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect.\",\"authors\":\"James J Bull, Scott L Nuismer, Christopher H Remien, Megan E Griffiths, Rustom Antia\",\"doi\":\"10.1080/14760584.2024.2320845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals.</p><p><strong>Areas covered: </strong>We present original theoretical arguments that, regardless of its R<sub>0</sub> value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic.</p><p><strong>Expert opinion: </strong>High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.</p>\",\"PeriodicalId\":12326,\"journal\":{\"name\":\"Expert Review of Vaccines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14760584.2024.2320845\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2024.2320845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect.
Introduction: Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals.
Areas covered: We present original theoretical arguments that, regardless of its R0 value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic.
Expert opinion: High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.
期刊介绍:
Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review.
The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.