时分数伪微分方程系统解的表示法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sabir Umarov
{"title":"时分数伪微分方程系统解的表示法","authors":"Sabir Umarov","doi":"10.1007/s13540-024-00241-z","DOIUrl":null,"url":null,"abstract":"<p>Systems of fractional order differential and pseudo-differential equations are used in modeling of various dynamical processes. In the analysis of such models, including stability analysis, asymptotic behaviors, etc., it is useful to have a representation formulas for the solution. In this paper we prove the existence and uniqueness theorems and derive representation formulas for the solution of general systems of fractional multi-order linear pseudo-differential equations through the matrix-valued Mittag-Leffler function. Examples illustrating the obtained results are also provided.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of solutions of systems of time-fractional pseudo-differential equations\",\"authors\":\"Sabir Umarov\",\"doi\":\"10.1007/s13540-024-00241-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Systems of fractional order differential and pseudo-differential equations are used in modeling of various dynamical processes. In the analysis of such models, including stability analysis, asymptotic behaviors, etc., it is useful to have a representation formulas for the solution. In this paper we prove the existence and uniqueness theorems and derive representation formulas for the solution of general systems of fractional multi-order linear pseudo-differential equations through the matrix-valued Mittag-Leffler function. Examples illustrating the obtained results are also provided.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00241-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00241-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

分数阶微分方程和伪微分方程系统被用于各种动态过程的建模。在对这些模型进行分析时,包括稳定性分析、渐近行为等,掌握解的表示公式是非常有用的。在本文中,我们通过矩阵值 Mittag-Leffler 函数证明了分数多阶线性伪微分方程一般系统解的存在性和唯一性定理,并推导出表示公式。此外,还提供了说明所获结果的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of solutions of systems of time-fractional pseudo-differential equations

Systems of fractional order differential and pseudo-differential equations are used in modeling of various dynamical processes. In the analysis of such models, including stability analysis, asymptotic behaviors, etc., it is useful to have a representation formulas for the solution. In this paper we prove the existence and uniqueness theorems and derive representation formulas for the solution of general systems of fractional multi-order linear pseudo-differential equations through the matrix-valued Mittag-Leffler function. Examples illustrating the obtained results are also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信