{"title":"具有奇异非线性的临界分数拉普拉斯方程正解的存在性和多重性","authors":"","doi":"10.1007/s13540-024-00242-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we consider the following problem <span> <span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\varDelta )^{s} u=g(x) u^{2_{s}^{*}-1}+\\lambda u^{-\\gamma }, &{} \\text { in } \\varOmega , \\\\ u>0, \\text { in } \\varOmega , \\quad u=0, &{} \\text { on } \\partial \\varOmega , \\end{array}\\right. } \\end{aligned}$$</span> </span>where <span> <span>\\(\\varOmega \\subset {\\mathbb {R}}^{N}(N > 2s)\\)</span> </span> is a smooth bounded domain, <span> <span>\\(s\\in (0,1)\\)</span> </span>, <span> <span>\\(\\lambda \\)</span> </span> is a positive constant, <span> <span>\\(0<\\gamma <1\\)</span> </span>, <span> <span>\\(2_{s}^{*}=\\frac{2 N}{N-2s}\\)</span> </span> and <span> <span>\\((-\\varDelta )^{s} \\)</span> </span> is the spectral fractional Laplacian. Based upon the Nehari manifold and using variational method we relate the number of positive solutions to the global maximum of the coefficient of the critical nonlinearity <em>g</em>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and multiplicity of positive solutions for a critical fractional Laplacian equation with singular nonlinearity\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00242-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we consider the following problem <span> <span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\varDelta )^{s} u=g(x) u^{2_{s}^{*}-1}+\\\\lambda u^{-\\\\gamma }, &{} \\\\text { in } \\\\varOmega , \\\\\\\\ u>0, \\\\text { in } \\\\varOmega , \\\\quad u=0, &{} \\\\text { on } \\\\partial \\\\varOmega , \\\\end{array}\\\\right. } \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\varOmega \\\\subset {\\\\mathbb {R}}^{N}(N > 2s)\\\\)</span> </span> is a smooth bounded domain, <span> <span>\\\\(s\\\\in (0,1)\\\\)</span> </span>, <span> <span>\\\\(\\\\lambda \\\\)</span> </span> is a positive constant, <span> <span>\\\\(0<\\\\gamma <1\\\\)</span> </span>, <span> <span>\\\\(2_{s}^{*}=\\\\frac{2 N}{N-2s}\\\\)</span> </span> and <span> <span>\\\\((-\\\\varDelta )^{s} \\\\)</span> </span> is the spectral fractional Laplacian. Based upon the Nehari manifold and using variational method we relate the number of positive solutions to the global maximum of the coefficient of the critical nonlinearity <em>g</em>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00242-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00242-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
Abstract In this paper, we consider following problem $$\begin{aligned} {\left\{ \begin{array}{ll} (-\varDelta )^{s} u=g(x) u^{2_{s}^{*}-1}+\lambda u^{-\gamma }, &{}\text { in }\varOmega , \ u>0, \text { in }\varOmega , \quad u=0, \amp;{}\text { on }\partial \varOmega , \end{array}\right.}\end{aligned}$$ 其中 \(\varOmega \subset {\mathbb {R}}^{N}(N > 2s)\) 是一个光滑的有界域, \(s\in (0,1)\)(\lambda)是一个正常数,\(0<\gamma<1\),\(2_{s}^{*}=\frac{2 N}{N-2s}\) 和\((-\varDelta )^{s}\)是谱分数拉普拉奇。基于 Nehari 流形并使用变分法,我们将正解的数量与临界非线性系数 g 的全局最大值联系起来。
Existence and multiplicity of positive solutions for a critical fractional Laplacian equation with singular nonlinearity
Abstract
In this paper, we consider the following problem $$\begin{aligned} {\left\{ \begin{array}{ll} (-\varDelta )^{s} u=g(x) u^{2_{s}^{*}-1}+\lambda u^{-\gamma }, &{} \text { in } \varOmega , \\ u>0, \text { in } \varOmega , \quad u=0, &{} \text { on } \partial \varOmega , \end{array}\right. } \end{aligned}$$where \(\varOmega \subset {\mathbb {R}}^{N}(N > 2s)\) is a smooth bounded domain, \(s\in (0,1)\), \(\lambda \) is a positive constant, \(0<\gamma <1\), \(2_{s}^{*}=\frac{2 N}{N-2s}\) and \((-\varDelta )^{s} \) is the spectral fractional Laplacian. Based upon the Nehari manifold and using variational method we relate the number of positive solutions to the global maximum of the coefficient of the critical nonlinearity g.