{"title":"多模态中风恢复数据的稀疏多向典型相关分析","authors":"Subham Das, Franklin D. West, Cheolwoo Park","doi":"10.1002/bimj.202300037","DOIUrl":null,"url":null,"abstract":"<p>Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse multiway canonical correlation analysis for multimodal stroke recovery data\",\"authors\":\"Subham Das, Franklin D. West, Cheolwoo Park\",\"doi\":\"10.1002/bimj.202300037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传统的典型相关分析(CCA)测量两个数据集之间的关联,并找出相关的贡献者。然而,当样本量小于变量数量或有两个以上数据集时,它在执行和解释方面就会遇到问题。我们的激励性实例是一项与中风有关的猪临床研究。数据是多模态的,由在多个时间点进行的测量组成,变量多于观测值。这项研究旨在根据生理变化发现重要的生物标志物和中风恢复模式。为了解决数据中存在的问题,我们开发了两种适用于多个数据集的稀疏 CCA 方法。我们使用各种模拟示例来说明和对比所提方法与现有方法的性能。在分析猪中风数据时,我们应用了所提出的稀疏 CCA 方法和降维技术,解释了恢复模式,并确定了对恢复有影响的变量。
Sparse multiway canonical correlation analysis for multimodal stroke recovery data
Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.